During eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237047 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1008755 | DOI Listing |
bioRxiv
October 2024
Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA.
Nucleic Acids Res
July 2024
Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, replicates using seven essential proteins encoded by its genome. Among these, the UL30 DNA polymerase, complexed with the UL42 processivity factor, orchestrates leading and lagging strand replication of the 152 kb viral genome. UL30 polymerase is a prime target for antiviral therapy, and resistance to current drugs can arise in immunocompromised individuals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2024
Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032.
Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined.
View Article and Find Full Text PDFNature
March 2024
Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA.
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ('the end-replication problem'). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1-Stn1-Ten1 (CST-Polα-primase).
View Article and Find Full Text PDFbioRxiv
January 2024
Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA.
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ("the end-replication problem"). We report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand by lagging-strand synthesis. This problem is solved by CST-Polymeraseα(Polα)-primase fill-in synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!