Significant reductions in populations of tsetse (Glossina spp) in parts of Zimbabwe have been attributed to increases in temperature over recent decades. Sustained increases in temperature might lead to local extinctions of tsetse populations. Extinction probabilities for tsetse populations have not so far been estimated as a function of temperature. We develop a time-homogeneous branching process model for situations where tsetse live at different levels of fixed temperature. We derive a probability distribution pk(T) for the number of female offspring an adult female tsetse is expected to produce in her lifetime, as a function of the fixed temperature at which she is living. We show that pk(T) can be expressed as a geometric series: its generating function is therefore a fractional linear type. We obtain expressions for the extinction probability, reproduction number, time to extinction and growth rates. The results are valid for all tsetse, but detailed effects of temperature will vary between species. No G. m. morsitans population can escape extinction if subjected, for extended periods, to temperatures outside the range 16°C-32°C. Extinction probability increases more rapidly as temperatures approach and exceed the upper and lower limits. If the number of females is large enough, the population can still survive even at high temperatures (28°C-31°C). Small decreases or increases in constant temperature in the neighbourhoods of 16°C and 31°C, respectively, can drive tsetse populations to extinction. Further study is needed to estimate extinction probabilities for tsetse populations in field situations where temperatures vary continuously.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237048 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0007769 | DOI Listing |
Mol Ecol
January 2025
School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
Advances in next-generation sequencing have allowed the use of DNA obtained from unusual sources for wildlife studies. However, these samples have been used predominantly to sequence mitochondrial DNA for species identification while population genetics analyses have been rare. Since next-generation sequencing allows indiscriminate detection of all DNA fragments in a sample, technically it should be possible to sequence whole genomes of animals from environmental samples.
View Article and Find Full Text PDFActa Biotheor
January 2025
Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
Conflicts within the tsetse fly belt revealed a strong correlation between the dynamics of bovine trypanosomosis and the insurgency involving farmers and herders in Nigeria and parts of West Africa. This study examined the history, causes and influence of farmers-herdsmen conflicts on banditry, terrorism and food security as it relates to the epidemiology of African animal trypanosomosis (AAT). A combination of literature database searches, semi-structured questionnaires, and mathematical modeling was employed.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Bedele District Livestock Development and Health Office, Bedele, Ethiopia.
This study assesses the prevalence of bovine trypanosomes and the density of tsetse flies in the Yem Special District, Southern Ethiopia, highlighting the disease's significant impact on livestock health and agricultural productivity. Conducted between May 2022 and January 2023, the cross-sectional survey analyzed 960 blood samples for trypanosomes prevalence and tsetse fly density. Results revealed a 10.
View Article and Find Full Text PDFTsetse flies and trypanosomosis significantly impact bovine production and human health in sub-Saharan Africa, exacerbating underdevelopment, malnutrition, and poverty. Despite various control strategies, long-term success has been limited. This study evaluates the combined use of entomopathogenic fungi (EPF) and the sterile insect technique (SIT) to combat tsetse flies.
View Article and Find Full Text PDFInsect Sci
December 2024
Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
Tsetse flies are the sole cyclic vectors of African trypanosomes, which cause human and animal African trypanosomiases in Africa. Tsetse fly control remains a promising option for disease management. The sterile insect technique (SIT) stands as an environmentally friendly tool to control tsetse populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!