Correlating Interlayer Spacing and Separation Capability of Graphene Oxide Membranes in Organic Solvents.

ACS Nano

Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States.

Published: May 2020

Membranes synthesized by stacking two-dimensional graphene oxide (GO) hold great promise for applications in organic solvent nanofiltration. However, the performance of a layer-stacked GO membrane in organic solvent nanofiltration can be significantly affected by its swelling and interlayer spacing, which have not been systematically characterized. In this study, the interlayer spacing of the layer-stacked GO membrane in different organic solvents was experimentally characterized by liquid-phase ellipsometry. To understand the swelling mechanism, the solubility parameters of GO were experimentally determined and used to mathematically predict the Hansen solubility distance between GO and solvents, which is found to be a good predictor for GO swelling and interlayer spacing. Solvents with a small solubility distance (e.g., dimethylformamide, -methyl-2-pyrrolidone) tend to cause significant GO swelling, resulting in an interlayer spacing of up to 2.7 nm. Solvents with a solubility distance larger than 9.5 (e.g., ethanol, acetone, hexane, and toluene) only cause minor swelling and are thus able to maintain an interlayer spacing of around 1 nm. Correspondingly, GO membranes in solvents with a large solubility distance exhibit good separation performance, for example, rejection of more than 90% of the small organic dye molecules (e.g., rhodamine B and methylene blue) in ethanol and acetone. Additionally, solvents with a large solubility distance result in a high slip velocity in GO channels and thus high solvent flux through the GO membrane. In summary, the GO membrane performs better in solvents that are unlike GO, i.e., solvents with large solubility distance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c01550DOI Listing

Publication Analysis

Top Keywords

interlayer spacing
24
solubility distance
24
swelling interlayer
12
solvents large
12
large solubility
12
solvents
9
graphene oxide
8
organic solvents
8
organic solvent
8
solvent nanofiltration
8

Similar Publications

Pre-intercalated Sodium Ions Enhance Sodium Storage of MoS Anode by Mitigating Structural Dissociation.

Nano Lett

January 2025

School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin University, Tianjin 300072, P. R. China.

Molybdenum disulfide (MoS) is a promising anode for sodium-ion batteries (SIBs) due to its high theoretical capacity and layered structure. However, a poor reversible conversion reaction and a low initial Coulombic efficiency (ICE) limit its practical application. This study systematically investigated the potential of pre-intercalated sodium ions molybdenum disulfide (Na-MoS) as an anode material for SIBs.

View Article and Find Full Text PDF

The target reservoir is a typical blocky bottom water reservoir. There are several interlayers of varying scales inside it, which impact the characteristics of the oil production and water breakthrough curves of the wells in the water flooding development oilfield, resulting in strong heterogeneity within the reservoir. The Sangtamu Oilfield has an average well spacing of approximately 600 m, causing a challenge in accurately identifying the range of small-scale interlayer spreading.

View Article and Find Full Text PDF

Aqueous zinc-based batteries (AZBs) are gaining widespread attention owing to their intrinsic safety, relatively low electrode potential, and high theoretical capacity. Transition metal dichalcogenides (TMDs) have convenient 2D ion diffusion channels, so they have been identified as promising host materials for AZBs, but face several key challenges such as the narrow interlayer spacing and the lack of in-deep understanding energy storage mechanisms. This review presents a comprehensive summary and discussion of the intrinsic structure, charge storage mechanisms, and key fabrication strategies of TMD-based cathodes for AZBs.

View Article and Find Full Text PDF

The large-scale implementation of 2D material-based membranes is hindered by mechanical stability and mass transport control challenges. This work describes the fabrication, characterisation, and testing of self-standing graphene oxide (GO) membranes cross-linked with oxides such as FeO, AlO, CaSO, NbO, and a carbide, SiC. These cross-linking agents enhance the mechanical stability of the membranes and modulate their mass transport properties.

View Article and Find Full Text PDF

Large-Area Clay Composite Membranes with Enhanced Permeability for Efficient Dye/Salt Separation.

Membranes (Basel)

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China.

The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!