The extensive genetic diversity of , a serious soil-borne phytopathogen, has led to the concept that encompasses a species complex [ species complex (RSSC)]. Insertion sequences (ISs) are suggested to play an important role in the genome evolution of this pathogen. Here, we identified and analysed transposable elements (TEs), ISs and transposons, in 106 RSSC genomes and 15 spp. We mapped 10 259 IS elements in the complete genome of 62 representative RSSC strains and closely related spp. A unique set of 20 IS families was widespread across the strains, IS and IS being the most abundant. Our results showed six novel transposon sequences belonging to the Tn family carrying passenger genes encoding antibiotic resistance and avirulence proteins. In addition, internal rearrangement events associated with ISs were demonstrated in strains. We also mapped IS elements interrupting avirulence genes, which provided evidence that ISs plays an important role in virulence evolution of RSSC. Additionally, the activity of ISs was demonstrated by transcriptome analysis and DNA hybridization in isolates. Altogether, we have provided collective data of TEs in RSSC genomes, opening a new path for understanding their evolutionary impact on the genome evolution and diversity of this important plant pathogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371123 | PMC |
http://dx.doi.org/10.1099/mgen.0.000374 | DOI Listing |
Ann Bot
January 2025
Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná, Rua Pioneiro, 2153, Jardim Dallas, CEP 85950 000, Palotina, Paraná, Brazil.
Background: Epiphyllous bryophytes are a group of plants with complex adaptations to colonize the leaves of vascular plants and are considered one of the most specialized and sensitive groups to environmental changes. Despite their specificity and ecological importance, these plants represent a largely neglected group in relation to scientific research and ecological data. This lack of information directly affects our understanding of biodiversity patterns and compromises the conservation of this group in threatened ecosystems.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.
View Article and Find Full Text PDFMol Ecol
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
Rhinolophus bats have been identified as natural reservoirs for viruses with global health implications, including severe acute respiratory syndrome-related coronaviruses (SARSr-CoV) and swine acute diarrhoea syndrome-related coronavirus (SADSr-CoV). In this study, we characterised the individual viromes of 603 bats to systematically investigate the diversity, abundance and geographic distribution of viral communities within R. affinis, R.
View Article and Find Full Text PDFBackground: Kyasanur forest disease virus (KFDV) is a tick-borne flavivirus causing debilitating and potentially fatal disease in people in the Western Ghats region of India. The transmission cycle is complex, involving multiple vector and host species, but there are significant gaps in ecological knowledge. Empirical data on pathogen-vector-host interactions and incrimination have not been updated since the last century, despite significant local changes in land use and the expansion of KFD to new areas.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
Plant root and soil-associated microbiomes are influenced by niches, including bulk and rhizosphere soil. In this work, we collected bulk and rhizosphere soil samples at four potato developmental stages (leaf growth, flowering, tuber elongation and harvest) to identify whether rhizosphere microbiota are structured in a growth stage-dependent manner. The bacterial and fungal microbiota showed significant temporal differences in the rhizosphere and bulk soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!