The self-assembly behavior of an ABC triblock copolypeptide consisting of poly(ethylene oxide--(leucine--valine)--lysine) (PEO-PLV-PK) was examined via dynamic light scattering in dilute aqueous solution. Leucine is a hydrophobic, α-helix forming polypeptide that exhibits a "zipper effect" in coiled-coil dimers. We hypothesize that the specific interaction afforded by the leucine zipper dominates the thermodynamics of self-assembly through the side-by-side ordering of α-helices, which drives vesicle formation in a polymer with only 6 wt % hydrophobic content. Additionally, a multitude of assembly sizes and morphologies were attainable from a single polymer, depending on the solution processing method. Thermodynamic effects of the leucine zipper can be interpreted, in part, from solubility parameters determined from molecular modeling. The combination of synthesis, solvent processing, and computational studies helps to elucidate the thermodynamic effects of this unique assembly motif on classical self-assembly processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.0c00420 | DOI Listing |
Planta
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.
View Article and Find Full Text PDFNat Commun
January 2025
Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Oncology, Geriatric Medical Center, Wuxi Second Geriatric Hospital, Wuxi Huishan Second People's Hospital, Wuxi, 214174, Jiangsu, China.
Colorectal carcinoma (CRC) is a highly prevalent and life-threatening disease with multi-stage progression, characterized by diverse molecular expression patterns at distinct stages, making treatment particularly challenging. Early detection and diagnosis of CRC are vital and can greatly benefit from the discovery of effective biomarkers. Researchers have identified novel gene signatures that play pivotal roles in specific CRC types or stages.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences, University of Siena, Siena, Italy.
The scaffold protein AMBRA1, which participates in the autophagy pathway, also promotes CD4 T cell differentiation to Tregs independent of autophagy through its interactor PP2A. Here we have investigated the role of AMBRA1 in CD8 T cell differentiation to cytotoxic T cells (CTL). AMBRA1 depletion in CD8 T cells was associated with impaired expression of the transcription factors RUNX3 and T-BET that drive CTL differentiation and resulted in impaired acquisition of cytotoxic potential.
View Article and Find Full Text PDFNat Commun
December 2024
Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
Currently there are no effective treatments for an array of neurodegenerative disorders to a large part because cell-based models fail to recapitulate disease. Here we develop a reproducible human iPSC-based model where laser axotomy causes retrograde axon degeneration leading to neuronal cell death. Time-lapse confocal imaging revealed that damage triggers an apoptotic wave of mitochondrial fission proceeding from the site of injury to the soma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!