Herein, an electrochemical method is presented for the detection of curcumin in food using a carbon nanotube (CNT)-carboxymethylcellulose (CMC) electrode. The CNT-CMC electrode exhibited ideal characteristics for curcumin detection, namely, a high response current and adequate peak separation toward curcumin oxidation. Cyclic voltammetry revealed two oxidation peaks. In the first scan, only the irreversible peak (Peak I) was observed at a higher potential. In the second scan, the reversible redox peak pairs (Peaks II and II') appeared at lower potentials, and the potential of Peak I was decreased. Peak I corresponded to oxidation of the hydroxyl groups of the benzene ring to the catechol group via a phenoxy radical, while Peaks II and II' indicated the redox loop system of the generated catechol group. The current at Peak II was used to quantify the concentration of curcumin in the linear range of 1 - 48 μM and detection limit of 0.084 μM. The concentrations of curcumin determined by the CNT-CMC electrode in real food samples were consistent with those determined by high-performance liquid chromatography.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.20P021DOI Listing

Publication Analysis

Top Keywords

detection curcumin
8
curcumin food
8
food carbon
8
cnt-cmc electrode
8
peaks ii'
8
catechol group
8
peak
7
curcumin
6
electrochemical detection
4
carbon nanotube-carboxymethylcellulose
4

Similar Publications

Tuberculosis (TB) is one of the leading causes of death in the world, despite being a preventable and curable disease. Irrespective of tremendous advancements in early detection and treatment, this disease still has high mortality rates. This is due to the development of antibiotic resistance, which significantly reduced the efficacy of antibiotics, rendering them useless against this bacterial infection.

View Article and Find Full Text PDF

White and Green Analytical Chemistry are innovative approaches in analytical chemistry that prioritize both sustainability and efficiency. Together, these approaches aim to advance scientific research while minimizing environmental impact and enhancing safety. This integration of environmental consciousness into analytical practices represents a significant step forward in achieving sustainable scientific progress.

View Article and Find Full Text PDF

Objectives: Exposure of gingival epithelial cells to butyrate, a short-chain fatty acid produced by dental plaque bacteria, cause cell death and subsequent damage-associated molecular pattern (DAMP) release. We investigated the effects of curcumin, a polyphenol extracted from turmeric, on butyrate-induced human gingival epithelial Ca9-22 cell death and DAMP release.

Methods: Ca9-22 cells were pretreated with curcumin before butyrate exposure.

View Article and Find Full Text PDF

Noninvasive imaging of β-amyloid is pivotal for the early diagnosis of Alzheimer's disease (AD). While single imaging methods have been extensively studied for detecting Aβ over the past decade, dual-modal probes have received scant attention. In this study, we synthesized and assessed a series of half-curcumin probes, among which demonstrated a high affinity and selectivity for Aβ aggregates.

View Article and Find Full Text PDF

[Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:

Article Synopsis
  • The study investigates how curcumin affects bladder cancer cells regarding growth, movement, and resistance to cisplatin (a chemotherapy drug) by targeting a specific signaling pathway (LKB1-AMPK-LC3).
  • Human bladder cancer cells (T24) and their cisplatin-resistant counterparts (T24/DDP) were treated with varying concentrations of curcumin, and various assays measured cell proliferation, migration, autophagy, and apoptosis.
  • Results showed that curcumin, especially when combined with metformin, influences these cellular functions and could reduce drug resistance, affecting the expression of proteins in the targeted signaling pathway.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!