Standard methods for calculating transport parameters in nanoscale field-effect transistors (FETs), namely carrier concentration and mobility, require a linear connection between the gate voltage and channel conductance; however, this is often not the case. One reason often overlooked is that shifts in chemical and electric potential can partially compensate each other, commonly referred to as quantum capacitance. In nanoscale FETs, capacitance is often unmeasurable and an analytical formula is required, which assumes the conducting channel as metallic and common methods of determining threshold voltage no longer couple properly into transport equations. As present and future FET structures become smaller and have increased channel-gate coupling, this issue will render standard methods impossible to use. This work discusses the validity of common methods of characterization for nanoscale FETs, develops a universal model to determine transport properties by only measuring the threshold voltage of an FET and presents a new parameter to easily classify FETs as either quantum capacitance-limited or metallic approximated charge transport. Also considered in this work is electrical hysteresis from trap states and, in combination with the proposed universal model, novel techniques are introduced to measure and remove the errors associated with these effects often ignored in literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201907321 | DOI Listing |
Phys Chem Chem Phys
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
In this study, a novel tunnel structure vanadate NaVO (NaVO) cathode for aqueous zinc ion batteries (AZIBs) is facilely fabricated by thermal decomposition of polyoxovanadate containing NH ions. The NaVO cathode is characterized by abundant oxygen vacancies and nanometer dimensions. These attributes can offer extra reaction sites and suppress structural collapse during circulation.
View Article and Find Full Text PDFNanoscale
January 2025
Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
Lowering the population inversion threshold is key to leveraging quantum dots (QDs) for nanoscale lasing and laser miniaturization. However, optical realization of population inversion in QDs has an inherent limitation: the number of excited electrons per QD is bound by the absorbed photons. Here we show that one can break this population limit and realize near-zero threshold inversion plasmonic doping.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.
The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.
The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Electroluminescent (EL) devices consisting of a single metal-semiconductor contact and a gate effect structure have garnered significant attention in the field of perovskite light-emitting devices. This interest is largely due to the thermal stability of the active layer and the simplicity of the device structure. However, the application of these devices in large-area light-emitting applications is hindered by the inherently low carrier mobility in perovskite materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!