Epithelial to mesenchymal transition (EMT) is a fundamental biological process that occurs during development and tumorigenesis. The Rho family of GTPases (Rho-family) is a well-characterized regulator of actin cytoskeleton that gives rise to EMT-associated cell activities. Meanwhile, there are in total at least 66 different Rho-GTPase-activating proteins (Rho-GAPs), which, as an upstream regulator, inactivate specific members of the Rho-family in a cell context-dependent manner. However, molecular roles of individual Rho-GAPs are poorly understood, particularly regarding their involvements in EMT. Here, based on comprehensive screening on the whole Rho-GAP family, we identified specific Rho-GAPs that are responsible for the maintenance of epithelial cell phenotypes, suppressing EMT in human mammary epithelial cells. Specifically, we revealed that at least two Rho-GAPs, that is, ARHGAP4 and SH3BP1, critically regulate the cell morphology. Among them, we focused on ARHGAP4 and demonstrated with multidisciplinary approaches that this specific Rho-GAP regulates epithelial/mesenchymal-selective marker expression, cell proliferation, migration, 3D morphogenesis, and focal adhesion/stress fiber-driven physical force generation in a manner reminiscent of the EMT process. Furthermore, we identified Septin9 with proteomic analyses as a negative regulator of ARHGAP4, which promotes the occurrence of EMT by activation of the FAK/Src signaling pathway. These findings shed light on the novel Rho-GAP-associated pathway in the EMT process under development and tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201902750RR | DOI Listing |
Sci Rep
October 2024
Department of Basic Medical Sciences, College of Medicine, Taibah University Medina, Almadinah Almunawwarah, Saudi Arabia.
Cerebellar vermis hypoplasia refers to a varying degree of incomplete development of the cerebellum and vermis. A Saudi family with four affected individuals with cerebellar vermis hypoplasia, facial dysmorphology, visual impairment, skeletal, and cardiac abnormalities was ascertained in this study. Three out of four patients could not survive longer and had died in early infancy.
View Article and Find Full Text PDFEur J Hum Genet
March 2023
Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA.
Mol Biol Cell
November 2021
Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan.
The Rho family of GTPases are inactivated in a cell context-dependent manner by Rho-GTPase-activating proteins (Rho-GAPs), but their signaling mechanisms are poorly understood. Here we demonstrate that ARHGAP4, one of the Rho-GAPs, forms a complex with SEPT2 and SEPT9 via its Rho-GAP domain and SH3 domain to enable both up- and down-modulation of integrin-mediated focal adhesions (FAs). We show that silencing ARHGAP4 and overexpressing its two mutually independent upstream regulators, SEPT2 and SEPT9, all induce reorganization of FAs to newly express Integrin Beta 1 and also enhance both cell migration and invasion.
View Article and Find Full Text PDFOncol Lett
June 2021
Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, I-25123 Brescia, Italy.
In total, ~25% of familial breast cancer (BC) is attributed to germline mutations of the BRCA1 and BRCA2 genes, while the rest of the cases are included in the BRCAX group. BC is also known to affect men, with a worldwide incidence of 1%. Epigenetic alterations, including DNA methylation, have been rarely studied in male breast cancer (MBC) on a genome-wide level.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
March 2021
Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan.
Rho-GTPase-activating proteins (Rho-GAPs) are essential upstream regulators of the Rho family of GTPases. Currently, it remains unclear if the phenotypic change caused by perturbations to a Rho-GAP is predictable from its amino acid sequence. Here we analyze the relationship between the morphological response of cells to the silencing of Rho-GAPs and their primary structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!