Acute liver failure (ALF) is a fatal liver disease characterized by severe hepatocyte destruction. MicroRNAs (miRNAs/miRs) have been reported to serve a key role in a number of liver diseases. Therefore, the aim of the present study was to investigate the role and underlying mechanism of miR‑214 in ALF. ALF murine and hepatocyte models were established using D‑galactosamine (D‑GalN) and lipopolysaccharide (LPS) or D‑GalN + tumor necrosis factor (TNF)‑α, respectively. The expression levels of miR‑214 and Bax were detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and/or western blotting. Furthermore, an automatic biochemical analyzer was used to measure the levels of aspartate aminotransferase (AST) or alanine aminotransferase (ALT). The levels of TNF‑α and interleukin (IL)‑6 were detected by ELISA and RT‑qPCR. In addition, TUNEL staining and flow cytometry were used to analyze cell apoptosis, and the protein expression of caspase‑3 was determined by western blotting. It was identified that the levels of AST and ALT were increased and that hepatocyte apoptosis was enhanced in the D‑GalN/LPS‑stimulated group compared with the control. Furthermore, higher expression of caspase‑3 was observed in the D‑GalN/LPS‑stimulated group. In addition, it was demonstrated that miR‑214 was downregulated, while Bax was upregulated in D‑GalN/LPS‑stimulated mice and D‑GalN/TNF‑α‑stimulated BNLCL2 cells. Moreover, in D‑GalN/TNF‑α‑stimulated BNLCL2 cells, miR‑214 overexpression suppressed apoptosis and decreased TNF‑α and IL‑6 levels, and these effects were reversed by the Bax plasmid. It was also identified that overexpression of miR‑214 significantly decreased Bax mRNA and protein expression levels in vitro. Collectively, the present results suggested that miR‑214 inhibited hepatocyte apoptosis during ALF development via targeting Bax, thus indicating that miR‑214 may be a potential target for ALF treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248488 | PMC |
http://dx.doi.org/10.3892/mmr.2020.11123 | DOI Listing |
Front Med (Lausanne)
December 2024
Department of Medical Ultrasound, Jinshan Hospital of Fudan University, Shanghai, China.
Purpose: Acute fatty liver of pregnancy (AFLP) is a severe complication that can occur in the third trimester or immediately postpartum, characterized by rapid hepatic failure. This study aims to explore the changes in portal vein blood flow velocity and liver function during pregnancy, which may assist in the early diagnosis and management of AFLP.
Methods: This longitudinal study was conducted at a tertiary healthcare center with participants recruited from routine antenatal check-ups.
JFMS Open Rep
January 2025
NEIKER-BRTA (Instituto Vasco de Investigación y Desarrollo Agrario - Basque Research and Technology Alliance), Derio, Bizkaia, Spain.
Case Summary: is a globally distributed apicomplexan protozoan infecting all warm-blooded animals. Cats are the definitive host, susceptible to clinical disease. In Spain, studies have shown the widespread presence of IgG antibodies in cats but there are no published data on clinical toxoplasmosis in cats from Spain.
View Article and Find Full Text PDFACG Case Rep J
January 2025
Stony Brook Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Stony Brook University Hospital, Stony Brook, NY.
Although herpes simplex virus, Epstein-Barr virus, and hemophagocytic lymphohistiocytosis are known causes of severe acute liver injury with or without liver failure, these diseases occur almost exclusively in immunocompromised and elderly patients. We report a case of an immunocompetent young man with no medical history who presented with a subacute cough and persistent fevers in the setting of a penile chancre. He was found to have severely elevated liver chemistries and was subsequently diagnosed with hemophagocytic lymphohistiocytosis because of disseminated herpes simplex virus type 1 and Epstein-Barr virus coinfection.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2025
Department of Anatomy and Physiology, theUniversity of Melbourne, Australia.
The circadian cycle is a fundamental biological rhythm that governs many physiological functions across nearly all living organisms. In the gastrointestinal tract, activities such as gut motility, hormone synthesis, and communication between the gut, central nervous system and microbiome all fluctuate in alignment with the circadian cycle. The enteric nervous system (ENS) is critical for co-ordinating many of these activities, however, how its activity is governed by the circadian cycle remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
Acute rejection (AR) is a significant complication in liver transplantation, impacting graft function and patient survival. Kupffer cells (KCs), liver-specific macrophages, can polarize into pro-inflammatory M1 or anti-inflammatory M2 phenotypes, both of which critically influence AR outcomes. Angiopoietin-like 4 (ANGPTL4), a secretory protein, is recognized for its function in regulating inflammation and macrophage polarization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!