The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases. Here, we review mutations that have been identified in genes involved in autophagy and their associations with neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198619 | PMC |
http://dx.doi.org/10.1038/s41421-020-0158-y | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
As part of an ongoing effort to generate comprehensive resources for the experimental analysis of fourth chromosome genes in Drosophila melanogaster, the Fourth Chromosome Resource Project has used CRISPR mutagenesis with single guide RNAs to isolate mutations in 62 of the 80 fourth chromosome, protein-coding genes. These mutations were induced on a fourth chromosome bearing a basal FRT insertion to facilitate experimental approaches involving FLP recombinase-induced mitotic recombination. To permit straightforward comparisons among mutant stocks, most of the mutations were generated on isogenic fourth chromosomes, which were then crossed into a common genetic background.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).
View Article and Find Full Text PDFPLoS Genet
January 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France.
Gamete killers are genetic loci that distort segregation in the progeny of hybrids because the killer allele promotes the elimination of the gametes that carry the sensitive allele. They are widely distributed in eukaryotes and are important for understanding genome evolution and speciation. We had previously identified a pollen killer in hybrids between two distant natural accessions of Arabidopsis thaliana.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!