Prokineticin receptors (PROKR1 and PROKR2) are G protein-coupled receptors which control human central and peripheral reproductive processes. Importantly, allelic variants of PROKR2 in humans are associated with altered migration of GnRH neurons, resulting in congenital hypogonadotropic hypogonadism (CHH), a heterogeneous disease characterized by delayed/absent puberty and/or infertility. Although this association is established in humans, murine models failed to fully recapitulate the reproductive and olfactory phenotypes observed in patients harboring PROKR2 mutations. Here, taking advantage of zebrafish model we investigated the role of prokr1b (ortholog of human PROKR2) during early stages of GnRH neuronal migration. Real-Time PCR and whole mount in situ hybridization assays indicate that prokr1b spatial-temporal expression is consistent with gnrh3. Moreover, knockdown and knockout of prokr1b altered the correct development of GnRH3 fibers, a phenotype that is rescued by injection of prokr1b mRNA. These results suggest that prokr1b regulates the development of the GnRH3 system in zebrafish. Analysis of gonads development and mating experiments indicate that prokr1b is not required for fertility in zebrafish, although its loss determine changes also at the testis level. Altogether, our results support the thesis of a divergent evolution in the control of vertebrate reproduction and provide a useful in vivo model for deciphering the mechanisms underlying the effect of PROKR2 allelic variants on CHH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203128 | PMC |
http://dx.doi.org/10.1038/s41598-020-64077-2 | DOI Listing |
The first clinical trial of zebrafish embryos acting as cancer "avatars" will start soon.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.
Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function.
View Article and Find Full Text PDFArch Toxicol
January 2025
Department of Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
Testing for developmental toxicity is an integral part of chemical regulations. The applied tests are laborious and costly and require a large number of vertebrate test animals. To reduce animal numbers and associated costs, the zebrafish embryo was proposed as an alternative model.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
Reductase expression is a potential indicator of cellular pathology. Single-detection systems for reductases have been developed, however, the development of dual-detection systems remain largely unexplored. We rationally designed a dual-lock fluorescent probe that exhibited a high signal-to-noise ratio with a fluorescence Off-On response exclusively for the simultaneous activity of two reductases, NTR and hNQO1, which are overexpressed in cancer hypoxia.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) is the leading form of senile dementia, affecting ∼6 million Americans and having a national economic impact of $321 billion, numbers expected to double by 2050. The major pathological hallmarks of AD include Amyloid Beta (Aβ) plaques and Tau neurofibrillary tangles (NFT). The first goal of this research was to develop novel forms of carbon dots (CD) using various precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!