The genomic platform that informs evolution of microRNA cascades remains unknown. Here we capitalised on the recent evolutionary trajectory of hominin-specific miRNA-4673, encoded in intron 4 of notch-1, to uncover the identity of one such precursor genomic element and the selective forces acting upon it. The miRNA targets genes that regulate Wnt/β-catenin signalling cascade. Primary sequence of the microRNA and its target region in Wnt modulating genes evolved from homologous signatures mapped to homotypic cis-clusters recognised by TCF3/4 and TFAP2A/B/C families. Integration of homologous TFAP2A/B/C cis-clusters (short range inhibitor of β-catenin) into the transcriptional landscape of Wnt cascade genes can reduce noise in gene expression. Probabilistic adoption of miRNA secondary structure by one such cis-signature in notch-1 reflected selection for superhelical curvature symmetry of precursor DNA to localise a nucleosome that overlapped the latter cis-cluster. By replicating the cis-cluster signature, non-random interactions of the miRNA with key Wnt modulator genes expanded the transcriptional noise buffering capacity via a coherent feed-forward loop mechanism. In consequence, an autonomous transcriptional noise dampener (the cis-cluster/nucleosome) evolved into a post-transcriptional one (the miRNA). The findings suggest a latent potential for remodelling of transcriptional landscape by miRNAs that capitalise on non-random distribution of genomic cis-signatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203229 | PMC |
http://dx.doi.org/10.1038/s41540-020-0131-2 | DOI Listing |
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFPlant Physiol
January 2025
Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China.
Carotenoids play indispensable roles in the ripening process of fleshy fruits. Capsanthin is a widely distributed and utilized natural red carotenoid. However, the regulatory genes involved in capsanthin biosynthesis remain insufficient.
View Article and Find Full Text PDFGenes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple genes along the main body axis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor in the tolerance to iron stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!