We describe a novel method to achieve a universal, massive, and fully automated analysis of cell motility behaviours, starting from time-lapse microscopy images. The approach was inspired by the recent successes in application of machine learning for style recognition in paintings and artistic style transfer. The originality of the method relies i) on the generation of atlas from the collection of single-cell trajectories in order to visually encode the multiple descriptors of cell motility, and ii) on the application of pre-trained Deep Learning Convolutional Neural Network architecture in order to extract relevant features to be used for classification tasks from this visual atlas. Validation tests were conducted on two different cell motility scenarios: 1) a 3D biomimetic gels of immune cells, co-cultured with breast cancer cells in organ-on-chip devices, upon treatment with an immunotherapy drug; 2) Petri dishes of clustered prostate cancer cells, upon treatment with a chemotherapy drug. For each scenario, single-cell trajectories are very accurately classified according to the presence or not of the drugs. This original approach demonstrates the existence of universal features in cell motility (a so called "motility style") which are identified by the DL approach in the rationale of discovering the unknown message in cell trajectories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203117 | PMC |
http://dx.doi.org/10.1038/s41598-020-64246-3 | DOI Listing |
Mol Biol Rep
January 2025
Department of Biology, Adelphi University, One South Avenue, P.O. Box 701, Garden City, NY, 11530-0701, USA.
Background: von Hippel-Lindau (VHL) hereditary cancer syndrome is caused by mutations in the VHL tumor suppressor gene and is characterized by a predisposition to form various types of tumors, including renal cell carcinomas, hemangioblastomas, and pheochromocytomas. The protein products of the VHL gene, pVHL, are part of an ubiquitin ligase complex that tags hypoxia inducible factor alpha (HIF-α) for proteosomal degradation. pVHL has also been reported to bind to atypical protein kinase C (aPKC).
View Article and Find Full Text PDFBiol Open
February 2025
Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA.
The network of proteins at the interface between cell-cell adherens junctions and the actomyosin cytoskeleton provides robust yet dynamic connections that facilitate cell shape change and motility. While this was initially thought to be a simple linear connection via classic cadherins and their associated catenins, we now have come to appreciate that many more proteins are involved, providing robustness and mechanosensitivity. Defining the full set of proteins in this network remains a key objective in our field.
View Article and Find Full Text PDFBrain Commun
January 2025
Neurosciences and Cell Biology Research Institute, St George's University of London, London SW17 0RE, UK.
In functional neurological disorder (FND), there is a fundamental disconnect between an apparently intact nervous system and the individuals' ability to consistently perform motor actions, perceive sensory signals and/or access effective cognition. Metacognition, the capacity to self-evaluate cognitive performance, appears highly relevant to FND pathophysiology. Poor metacognition is a potential mechanism via which abnormal models of self and the state of the world could arise and persist unchecked.
View Article and Find Full Text PDFJ Exp Pharmacol
January 2025
Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
This narrative review intends to provide thorough information on the anti-inflammatory activities of plants, the largest genus of the family Zingiberaceae. The articles were searched on the PubMed database using 'Alpinia AND anti-inflammatory activity' as the keywords, filtered to articles published from 2020 to 2024 and free full-text. Of the approximately 248 members of the genus plants, the most commonly studied for their anti-inflammatory activities are , , , and .
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.
Methods: This study included 107 CRC patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!