Epithelial-mesenchymal transition (EMT) is a crucial process for cancer cells to acquire metastatic potential, which primarily causes death in gastric cancer (GC) patients. Bone morphogenetic protein 4 (BMP4) is a member of the TGF-β family that plays an indispensable role in human cancers. However, little is known about its roles in GC metastasis. In this study, BMP4 was found to be frequently overexpressed in GC tissues and was correlated with poor patient's prognosis. BMP4 was upregulated in GC cell lines and promoted EMT and metastasis of GC cells both and , whereas knockdown of BMP4 significantly inhibited EMT and metastasis of GC cells. Furthermore, the inhibitor of DNA binding 1 (also known as DNA-binding protein inhibitor ID1) was identified as a downstream target of BMP4 using PCR arrays and was upregulated via SMAD1/5/8 phosphorylation. ID1 knockdown attenuated BMP4-induced EMT and invasion in GC cells. Moreover, ID1 overexpression in BMP4 knockdown cells restored the promotion of EMT and cell invasion. In summary, BMP4 induced EMT and promoted GC metastasis by upregulating ID1 expression. Antagonizing BMP4 could be a potential therapeutic strategy for GC metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.237222DOI Listing

Publication Analysis

Top Keywords

bmp4
9
gastric cancer
8
epithelial-mesenchymal transition
8
emt metastasis
8
metastasis cells
8
metastasis
6
emt
6
id1
5
cells
5
bmp4 promotes
4

Similar Publications

Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However, studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study, we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development.

View Article and Find Full Text PDF

Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches.

View Article and Find Full Text PDF

Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (, , , and ) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs).

View Article and Find Full Text PDF

Bone fracture repair initiates by periosteal expansion. The periosteum is typically quiescent, but upon fracture, periosteal cells proliferate and contribute to bone fracture repair. The expansion of the periosteum is regulated by gene transcription; however, the molecular mechanisms behind periosteal expansion are unclear.

View Article and Find Full Text PDF

Understanding the mechanisms of hypoblast development and its role in the implantation is critical for improving farm animal reproduction, but it is hampered by the lack of research models. Here we report that a chemical cocktail (FGF4, BMP4, IL-6, XAV939, and A83-01) enables de novo derivation and long-term culture of bovine extraembryonic endoderm cells (bXENs). Transcriptomic and epigenomic analyses confirmed the identity of bXENs and revealed that they are resemble hypoblast lineages of early bovine peri-implantation embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!