Cytokines and other secreted soluble proteins are routinely assayed as fluorescence intensities on the Luminex (Luminex, Austin, TX) platform. As with any immunoassay, a portion of the measured Ab binding can be nonspecific. Use of spiked-in microbead controls (e.g., AssayChex Process, Control Panel; Radix Biosolutions, Georgetown, TX) can determine the level of nonspecific binding on a per specimen basis. A statistical approach for correction of this assay's nonspecific binding artifact was first described in earlier work. The current paper describes a novel utility written in the R language (https://www.r-project.org), that refines correction for nonspecific binding in three important ways: 1) via local polynomial regression, the utility allows for curvature in relationships between soluble protein median fluorescence intensities and nonspecific binding median fluorescence intensities; 2) to stabilize correction, the fit of the nonlinear regression function is obtained via repeated cross-validation; and 3) the utility addresses possible bias due to technical error in measured nonspecific binding. The utility first logarithm transforms and then removes plate/batch/lot artifacts from median fluorescence intensities prior to correction for nonspecific binding, even when plates/batches/lots are unbalanced with respect to experimental factors of interest. Continuous (e.g., age) and categorical (e.g., diagnosis) covariates are accommodated in plate/batch/lot artifact correction. We present application of the utility to a panel of 62 cytokines in a sample of human patients diagnosed with systemic sclerosis and to an experiment that examined multiple lots of a human 51-cytokine panel. The R script for our new utility is publicly available for download from the web.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891557 | PMC |
http://dx.doi.org/10.4049/jimmunol.2000017 | DOI Listing |
Biophys J
January 2025
Department of Physics, Kansas State University, Manhattan, KS 66506, USA. Electronic address:
We present a model to describe the concentration-dependent growth of protein filaments. Our model contains two states, a low entropy/high affinity ordered state and a high entropy/low affinity disordered state. Consistent with experiments, our model shows a diffusion-limited linear growth regime at low concentration, followed by a concentration-independent plateau at intermediate concentrations, and rapid disordered precipitation at the highest concentrations.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015. JSS Academy of Higher Education and Research, Mysuru, Karnataka, India.
There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
In DNA double helices, Hoogsteen (HG) base pairing is an alternative mode of Watson-Crick (WC) base pairing. HG bp has a different hydrogen bonding pattern than WC bp. We investigate here the binding energy of homeodomain proteins with a HG-DNA duplex, where DNA adopts a HG bp in its sequence.
View Article and Find Full Text PDFBiomolecules
January 2025
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
The interaction between molecular targeted therapy drugs and target proteins is crucial with regard to the drugs' anti-tumor effects. Electric fields can change the structure of proteins, which determines the interaction between drugs and proteins. However, the regulation of the interaction between drugs and target proteins and the anti-tumor effects of electric fields have not been studied thoroughly.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!