A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding. | LitMetric

Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding.

Proc Natl Acad Sci U S A

School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853;

Published: May 2020

The versatility of CRISPR-Cas endonucleases as a tool for biomedical research has led to diverse applications in gene editing, programmable transcriptional control, and nucleic acid detection. Most CRISPR-Cas systems, however, suffer from off-target effects and unpredictable nonspecific binding that negatively impact their reliability and broader applicability. To better evaluate the impact of mismatches on DNA target recognition and binding, we develop a massively parallel CRISPR interference (CRISPRi) assay to measure the binding energy between tens of thousands of CRISPR RNA (crRNA) and target DNA sequences. By developing a general thermodynamic model of CRISPR-Cas binding dynamics, our results unravel a comprehensive map of the energetic landscape of nuclease-dead Cas12a (dCas12a) from as it inspects and binds to its DNA target. Our results reveal concealed thermodynamic factors affecting dCas12a DNA binding, which should guide the design and optimization of crRNA that limits off-target effects, including the crucial role of an extended protospacer adjacent motif (PAM) sequence and the impact of the specific base composition of crRNA-DNA mismatches. Our generalizable approach should also provide a mechanistic understanding of target recognition and DNA binding when applied to other CRISPR-Cas systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260945PMC
http://dx.doi.org/10.1073/pnas.1918685117DOI Listing

Publication Analysis

Top Keywords

massively parallel
8
reveal concealed
8
concealed thermodynamic
8
crispr-cas systems
8
off-target effects
8
dna target
8
target recognition
8
dna binding
8
binding
7
dna
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!