Objective: To investigate the effects of hydrogen water on proliferation, differentiation, collagen secretion and Nrf2 expression in paraquat-induced human lung fibroblasts.
Methods: cultured human lung fibroblasts (HFL1) exposed to 600 μmol/L paraquat (PQ) for 24 h were treated with hydrogen water with or without RNA interference of Nrf2 expression. The changes in the cell proliferation were examined using MTT assay, and the expressions of Col-I, Col-III, α-SMA and Nrf2 in the cells were detected using Western blotting, real-time quantitative PCR and immunofluorescence assay. The contents of SOD, CAT and GSH in the cells were determined with ELISA.
Results: Compared with the PQ-exposed cells, the cells with hydrogen water treatment showed significantly lowered expressions of Col-I, Col-III, and α-SMA. Interference of Nrf2 expression obviously attenuated the effect of hydrogen water on PQ-exposed cells. Hydrogen water treatment significantly increased the expression of Nrf2 and promoted the production of the antioxidants in PQ-exposed lung fibroblasts.
Conclusions: Hydrogen water enhances Nrf2 expression to promote the proliferation and production of antioxidants and inhibit the differentiation and collagen secretion in PQ-exposed human lung fibroblasts
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086139 | PMC |
http://dx.doi.org/10.12122/j.issn.1673-4254.2020.02.15 | DOI Listing |
J Mol Model
January 2025
Sorbonne Université, CNRS, "De la Molécule aux Nano-Objets : Réactivité, Interactions et Spectroscopies", MONARIS, UMR 8233, 4 Place Jussieu, Paris, 75005, France.
Context: A chemical reaction can be described, from a physicochemical perspective, as a redistribution of electron density. Additionally, non-covalent interactions locally modify the electron density distribution. This study aims to characterize the modification of reactivity caused by the presence of non-covalent interactions such as hydrogen bonds, in a reaction involving the formation of two bonds and the breaking of two others: CH₃COOH + NH₂CH₃ → CH₃CONHCH₃.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang University, College of Chemical and Biological Engineering, CHINA.
Electrochemical water splitting is a pivotal technology for storing intermittent electricity from renewable sources into hydrogen fuel. However, its overall energy efficiency is impeded by the sluggish oxygen evolution reaction (OER) at the anode. In the quest to design high-performance anode catalysts for driving the OER under non-acidic conditions, iron (Fe) has emerged as a crucial element.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.
View Article and Find Full Text PDFInorg Chem
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
Three cases of aminobenzoic acid hybrid polyoxotungstates, Na(HO)[(HPWO) (OCCHNH)]·7HO (), K(HO)[(AsWO)(OCCHNH)]·4HO (), and [(HN(CH)]Na(HO)[(SbWO) (OCCHNH)]·7HO (), were successfully synthesized. This is the first report of the successful assembly of the hexanuclear {XW} (X = HP, As, or Sb) clusters and organic carboxylic acid (para aminobenzoic acid) ligands. All three hybrids feature a common {XW} unit composed of a six-membered {WO} octahedral ring capped by one {XO} trigonal pyramid.
View Article and Find Full Text PDFRSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!