Background: The heterogeneity within Alzheimer's disease (AD) seriously challenges the development of disease-modifying treatments. We investigated volume of the basal forebrain, hippocampus, and precuneus in atrophy subtypes of AD and explored the relevance of subtype stratification in a small clinical trial on encapsulated cell biodelivery (ECB) of nerve growth factor (NGF) to the basal forebrain.
Methods: Structural MRI data was collected for 90 amyloid-positive patients and 69 amyloid-negative healthy controls at baseline, 6-, 12-, and 24-month follow-up. The effect of the NGF treatment was investigated in 10 biopsy-verified AD patients with structural MRI data at baseline and at 6- or 12-month follow-up. Patients were classified as typical, limbic-predominant, hippocampal-sparing, or minimal atrophy AD, using a validated visual assessment method. Volumetric analyses were performed using a region-of-interest approach.
Results: All AD subtypes showed reduced basal forebrain volume as compared with the healthy controls. The limbic-predominant subtype showed the fastest basal forebrain atrophy rate, whereas the minimal atrophy subtype did not show any significant volume decline over time. Atrophy rates of the hippocampus and precuneus also differed across subtypes. Our preliminary data from the small NGF cohort suggest that the NGF treatment seemed to slow the rate of atrophy in the precuneus and hippocampus in some hippocampal-sparing AD patients and in one typical AD patient.
Conclusions: The cholinergic system is differentially affected in distinct atrophy subtypes of AD. Larger studies in the future should confirm that this differential involvement of the cholinergic system may contribute to subtype-specific response to cholinergic treatment. Our preliminary findings suggest that future clinical trials should target specific subtypes of AD, or at least report treatment effects stratified by subtype.
Trial Registration: ClinicalTrials.gov identifier: NCT01163825. Registered 14 July 2010.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203806 | PMC |
http://dx.doi.org/10.1186/s13195-020-00620-7 | DOI Listing |
Molecules
January 2025
Chair and Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
Vitamin B (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain and improves the psycho-emotional state.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.
View Article and Find Full Text PDFBiomolecules
January 2025
Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Pará, Belém 66075-110, PA, Brazil.
Aromatic plants are rich sources of essential oils (EOs), recognized for their therapeutic properties due to their diversity of phytochemicals. This study investigated the anxiolytic and antidepressant effects of essential oil (MsEO) through inhalation in an animal model and its in vitro anticholinesterase (AChE) activity. The EO was obtained by hydrodistillation, and its volatile constituents were analyzed by GC-MS.
View Article and Find Full Text PDFFoods
January 2025
Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
Given its antioxidant effects and central nervous system benefits, we hypothesized that RJ6601 should improve neurodegeneration in the hippocampus, a region critical for cognition and the maintenance of quality of life (QoL). To assure its safety, a single fixed dose of 2000 mg/kg BW was administered to female Wistar rats (250-450 g, 18 months old) to test the acute toxicity of RJ6601. No mortality and toxicity signs were observed.
View Article and Find Full Text PDFGeorgian Med News
November 2024
Lab. Neurobiology of Sleep-Wakefulness Cycle, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
Aim: The present investigation aimed to explore in rats the early postnatal dysfunction of the brain muscarinic cholinergic system (EPDMChS) during the most vulnerable period of postnatal development, as the possible main factor for changes in adult hippocampal neurogenesis and disorders in hippocampus-dependent spatial learning and memory.
Methods: White inbred rats (n=15 in each group) were used. EPDMCHS was produced by a new method, which includes early postnatal blocking of M1-M5 muscarinic acetylcholine receptors in the rat pups, using subcutaneous injection of Scopolamine during postnatal days 7-28.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!