Human Adenovirus species C (HAdV-C) is the most common etiologic agent of respiratory disease. In the present study, we characterized the nearly full-length genome of one potential new HAdV-C recombinant strain constituted by Penton and Fiber proteins belonging to type 89 and a chimeric Hexon protein of types 1 and 89. By using viral metagenomics techniques, we screened out, in the states of Tocantins and Pará, Northern and North regions of Brazil, from 2010 to 2016, 251 fecal samples of children between 0.5 to 2.5 years old. These children were presenting acute diarrhea not associated with common pathogens (i.e., rotavirus, norovirus). We identified two HAdV-C strains in two distinct patients. Phylogenetic analysis performed using all complete genomes available at GenBank database indicated that one strain (HAdV-C BR-245) belonged to type 1. The phylogenetic analysis also indicated that the second strain (HAdV-C BR-211) was located at the base of the clade formed by the newly HAdV-C strains type 89. Recombination analysis revealed that strain HAdV-C BR-211 is a chimera in which the variable regions of combined HAdV-C1 and HAdV-C89 sequences. Therefore, HAdV-C BR-211 strain possesses a genomic backbone of type HAdV-C89 and a unique insertion of HAdV-C1 in the Hexon sequence. Recombination may play an important driving force in HAdV-C diversity and evolution. Studies employing complete genomic sequencing on circulating HAdV-C strains in Brazil are needed to understand the clinical significance of the presented data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290489 | PMC |
http://dx.doi.org/10.3390/v12050508 | DOI Listing |
Virol Sin
December 2024
Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China. Electronic address:
Acute respiratory tract infections (ARTIs) are among the leading causes of morbidity and mortality in children worldwide. Human adenovirus (HAdV) infections are estimated to account for at least 5% of pediatric ARTIs. The circulated genotypes of HAdV and the correlation between genotype and clinical manifestations in Wuhan, China, before and after the complete relaxation of nonpharmaceutical interventions against severe acute respiratory syndrome coronavirus 2, remain unknown.
View Article and Find Full Text PDFPLoS One
August 2024
Virology Section, Evandro Chagas Institute, Secretariat for Health Surveillance and Environment, Ananindeua, Pará, Brazil.
Jpn J Infect Dis
September 2024
Division of Microbiology, Osaka Institute of Public Health, Japan.
J Med Virol
April 2024
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
J Med Virol
December 2023
Beijing Center for Disease Control and Prevention/Beijing Academy for Preventive Medicine/Beijing Institute of Tuberculosis Control Research and Prevention, Institute for immunization and prevention, Beijing, China.
To investigate the molecular epidemiological characteristics and genetic variations of human adenovirus (HAdV) in acute respiratory tract infections in Beijing. Whole-genome sequencing and phylogenetic analyses were performed for 83 strains of HAdV with different types in Beijing from 2014 to 2019. The clinical characteristics of HAdV infection were analyzed statistically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!