A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hot Corrosion and Mechanical Performance of Repaired Inconel 718 Components via Laser Additive Manufacturing. | LitMetric

AI Article Synopsis

  • * The research investigates how high-temperature hot corrosion in a specific salt mixture alters the microstructure and tensile properties of the repaired alloy over varying durations.
  • * Findings reveal that after hot corrosion treatment, the tensile strength of the repaired specimens initially increases but eventually declines, indicating a complex interplay between thermal effects and corrosion mechanisms.

Article Abstract

Hot corrosion is one of the crucial failure modes of Ni-based superalloy components operating at high temperatures, which inevitably affects the subsequent mechanical properties of the alloys. In this research, damaged Inconel 718 alloy components with a pre-made trapezoid groove are repaired using laser additive manufacturing technique, and the change mechanisms of the microstructure and tensile properties of the repaired Inconel 718 alloy due to the hot corrosion in the salt mixture of 87.5 wt.% NaSO + 5 wt.% NaCl + 7.5 wt.% NaNO at 650 °C for different durations are investigated. The results show that oxidation and Cr-depletion occur on the repaired components due to the hot corrosion, and the corrosion products are mainly composed of CrO, FeO, and NiS. The tensile strength and elongation of the as-repaired specimens are 736.6 MPa and 12.5%, respectively. After being hot corroded for 50 h, the tensile strength increases to 1022.9 MPa and elongation decreases to 1.7%. However, after being hot corroded for 150 h, both tensile strength and elongation of the repaired specimens drop to 955.8 MPa and 1.2%, respectively. The mechanical performance alteration is highly related to thermal effects instead of the molten salt attack.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254347PMC
http://dx.doi.org/10.3390/ma13092128DOI Listing

Publication Analysis

Top Keywords

hot corrosion
16
inconel 718
12
tensile strength
12
mechanical performance
8
repaired inconel
8
laser additive
8
additive manufacturing
8
718 alloy
8
strength elongation
8
hot corroded
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: