Bioactivity-guided isolation supported by LC-HRESIMS metabolic profiling led to the isolation of two new compounds, a ceramide, stylissamide A (), and a cerebroside, stylissoside A (), from the methanol extract of the Red Sea sponge . Structure elucidation was achieved using spectroscopic techniques, including 1D and 2D NMR and HRMS. The bioactive extract's metabolomic profiling showed the existence of various secondary metabolites, mainly oleanane-type saponins, phenolic diterpenes, and lupane triterpenes. The in vitro cytotoxic activity of the isolated compounds was tested against two human cancer cell lines, MCF-7 and HepG2. Both compounds, and , displayed strong cytotoxicity against the MCF-7 cell line, with IC values at 21.1 ± 0.17 µM and 27.5 ± 0.18 µM, respectively. They likewise showed a promising activity against HepG2 with IC at 36.8 ± 0.16 µM for and IC 30.5 ± 0.23 µM for compared to the standard drug cisplatin. Molecular docking experiments showed that and displayed high affinity to the SET protein and to inhibitor 2 of protein phosphatase 2A (I2PP2A), which could be a possible mechanism for their cytotoxic activity. This paper spreads light on the role of these metabolites in holding fouling organisms away from the outer surface of the sponge, and the potential use of these defensive molecules in the production of novel anticancer agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281077 | PMC |
http://dx.doi.org/10.3390/md18050241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!