Smart conductive materials are developed in regenerative medicine to promote a controlled release profile of charged bioactive agents in the vicinity of implants. The incorporation and the active electrochemical release of the charged compounds into the organic conductive coating is achieved due to its intrinsic electrical properties. The anti-inflammatory drug dexamethasone was added during the polymerization, and its subsequent release at therapeutic doses was reached by electrical stimulation. In this work, a Poly (3,4-ethylenedioxythiophene): κ-carrageenan: dexamethasone film was prepared, and κ-carrageenan was incorporated to keep the electrochemical and physical stability of the electroactive matrix. The presence of κ-carrageenan and dexamethasone in the conductive film was confirmed by µ-Raman spectroscopy and their effect in the topographic was studied using profilometry. The dexamethasone release process was evaluated by cyclic voltammetry and High-Resolution mass spectrometry. In conclusion, κ-carrageenan as a doping agent improves the electrical properties of the conductive layer allowing the release of dexamethasone at therapeutic levels by electrochemical stimulation, providing a stable system to be used in organic bioelectronics systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249122PMC
http://dx.doi.org/10.3390/molecules25092139DOI Listing

Publication Analysis

Top Keywords

κ-carrageenan doping
8
doping agent
8
controlled release
8
release dexamethasone
8
dexamethasone therapeutic
8
therapeutic doses
8
electrical properties
8
κ-carrageenan dexamethasone
8
release
6
dexamethasone
6

Similar Publications

Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness.

View Article and Find Full Text PDF

Design of a Co doped carbon Backbone with self-grown Au nanoparticles via a 'Triple Advantage' Strategy for sensitive dopamine detection.

J Colloid Interface Sci

January 2025

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University 071002 Baoding, PR China. Electronic address:

In this study, a Co doped polyhedral carbon skeleton (Co CN) was prepared by nitrogen carbonization using ZIF-67 as a precursor. The Co CN features a rough surface with excellent electrical conductivity, and the Co atoms exhibit unique catalytic properties. Based on these characteristics, we used Co CN as a carrier to load Au nanoparticles (NPs) onto its surface through the linkage and reduction effects of polyoxometalates (POMs).

View Article and Find Full Text PDF

Exercise and exerkines: Mechanisms and roles in anti-aging and disease prevention.

Exp Gerontol

January 2025

Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Department of Rheumatology and Immunology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Aging is a complex biological process characterized by increased inflammation and susceptibility to various age-related diseases, including cognitive decline, osteoporosis, and type 2 diabetes. Exercise has been shown to modulate mitochondrial function, immune responses, and inflammatory pathways, thereby attenuating aging through the regulation of exerkines secreted by diverse tissues and organs. These bioactive molecules, which include hepatokines, myokines, adipokines, osteokines, and neurokines, act both locally and systemically to exert protective effects against the detrimental aspects of aging.

View Article and Find Full Text PDF

High selectivity, capacity and stability for electrochemical lithium extraction on boron-doped HMnO by tailoring lattice constant and intercalation energy.

Water Res

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:

A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.

View Article and Find Full Text PDF

Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!