Motivation: Genetic map construction is a foundational step in the analysis of structured experimental populations. For markers that hybridize to several genetically similar locations, or where several alleles are present (such as in multiparental populations), current methods often discard the marker or incorrectly call the genotypes. These errors result in information loss, or incorrect genotypes that can corrupt map construction.
Results: We present a new approach for simultaneously performing genetic map construction and marker calling. Our new approach allows the calling of a larger number of markers, a larger number of unique alleles per marker and the correct use of markers which hybridize to multiple genetically similar locations. We demonstrate our new approach using simulations, a biparental wheat population and an eight-parent population of spring bread wheat. Applying our method to the eight-parent population increased the number of mapped markers by 71%. We show that the new genetic map allows the investigation of synteny in ways that were not previously possible in that dataset.
Availability And Implementation: The method described in this article has been incorporated into R package mpMap2. It is available from CRAN and also from https://github.com/rohan-shah/mpMap2.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btaa295 | DOI Listing |
Biochem Genet
January 2025
Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248001, India.
Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
Codon usage bias (CUB) refers to the different frequencies with which various codons are utilized within a genome. Examining CUB is essential for understanding genome structure, function, and evolution. However, little was known about codon usage patterns and the factors influencing the nuclear genomes of eight ecologically significant Sapindaceae species widely utilized for food and medicine.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.
Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
The color of the rind is one of the most crucial agronomic characteristics of watermelon ( L.). Its genetic analysis was conducted to provide the identification of genes regulating rind color and improving the quality of watermelon appearance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!