Nanotheranostic agents (NTAs) that integrate diagnostic capabilities and therapeutic functions have great potential for personalized medicine, yet poor tumor specificity severely restricts further clinical applications of NTAs. Here, a pro-NTA (precursor of nanotheranostic agent) activation strategy is reported for in situ NTA synthesis at tumor tissues to enhance the specificity of tumor therapy. This pro-NTA, also called PBAM, is composed of an MIL-100 (Fe)-coated Prussian blue (PB) analogue (K Mn[Fe(CN) ]) with negligible absorption in the near-infrared region and spatial confinement of Mn ions. In a mildly acidic tumor microenvironment (TME), PBAM can be specifically activated to synthesize the photothermal agent PB nanoparticles, with release of free Mn ions due to the internal fast ion exchange, resulting in the "ON" state of both T -weighted magnetic resonance imaging and photoacoustic signals. In addition, the combined Mn -mediated chemodynamic therapy in the TME and PB-mediated photothermal therapy guarantee a more efficient therapeutic performance compared to monotherapy. In vivo data further show that the pro-NTA activation strategy could selectively brighten solid tumors and detect invisible lymph node metastases with high specificity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202001452 | DOI Listing |
Heliyon
January 2025
Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.
Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia.
Herein, electrochemical sensing of paracetamol in polluted water was achieved using facile-synthesized tungsten oxide nanoparticles. Ion exchange resin has been used as a sustainable preparation route, while the prepared nanoparticles have been characterized by XRD and SEM analyses. Orthorhombic WO·HO nano-plates have been synthesized a facile preparation method, where the crystal size has been calculated as 25-33 nm, and these results were used to create a 3D model of the prepared WO·HO nano-plates.
View Article and Find Full Text PDFNat Commun
January 2025
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
Water is a critical component in polyelectrolyte anion exchange membranes (AEMs). It plays a central role in ion transport in electrochemical systems. Gaining a better understanding of molecular transport and conductivity in AEMs has been challenged by the lack of a general methodology capable of capturing and connecting water dynamics, water structure, and ionic transport over time and length scales ranging from those associated with individual bond vibrations and molecular reorientations to those pertaining to macroscopic AEM performance.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:
Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.
View Article and Find Full Text PDFPLoS One
January 2025
Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
Ion exchange membranes (IEMs) are permselective membranes that, in principle, only allow the flow of ions with a specific charge sign, opposite to that of the fixed membrane ionic groups (counter-ions). This charge-based selectivity, like the size-based selectivity of classic semipermeable membranes, leads to an uneven distribution of permeating ions on the two sides of the membrane, which allows for ion separation or recovery in various processes in industry or environmental protection. Here, we apply the principles of mass balance, charge neutrality, and equality of electrochemical potentials in the state of thermodynamic equilibrium to provide a simple method for estimating the Gibbs-Donnan factors and the equilibrium concentrations of permeating ions in two compartments separated by an ideal IEM, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!