Simultaneous Motion and Distortion Correction Using Dual-Echo Diffusion-Weighted MRI.

J Neuroimaging

Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA.

Published: May 2020

AI Article Synopsis

Article Abstract

Background And Purpose: Geometric distortions resulting from large pose changes reduce the accuracy of motion measurements and interfere with the ability to generate artifact-free information. Our goal is to develop an algorithm and pulse sequence to enable motion-compensated, geometric distortion compensated diffusion-weighted MRI, and to evaluate its efficacy in correcting for the field inhomogeneity and position changes, induced by large and frequent head motions.

Methods: Dual echo planar imaging (EPI) with a blip-reversed phase encoding distortion correction technique was evaluated in five volunteers in two separate experiments and compared with static field map distortion correction. In the first experiment, dual-echo EPI images were acquired in two head positions designed to induce a large field inhomogeneity change. A field map and a distortion-free structural image were acquired at each position to assess the ability of dual-echo EPI to generate reliable field maps and enable geometric distortion correction in both positions. In the second experiment, volunteers were asked to move to multiple random positions during a diffusion scan. Images were reconstructed using the dual-echo correction and a slice-to-volume registration (SVR) registration algorithm. The accuracy of SVR motion estimates was compared to externally measured ground truth motion parameters.

Results: Our results show that dual-echo EPI can produce slice-level field maps with comparable quality to field maps generated by the reference gold standard method. We also show that slice-level distortion correction improves the accuracy of SVR algorithms as slices acquired at different orientations have different levels of distortion, which can create errors in the registration process.

Conclusions: Dual-echo acquisitions with blip-reversed phase encoding can be used to generate slice-level distortion-free images, which is critical for motion-robust slice to volume registration. The distortion corrected images not only result in better motion estimates, but they also enable a more accurate final diffusion image reconstruction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758991PMC
http://dx.doi.org/10.1111/jon.12708DOI Listing

Publication Analysis

Top Keywords

distortion correction
20
dual-echo epi
12
field maps
12
distortion
8
diffusion-weighted mri
8
geometric distortion
8
field inhomogeneity
8
blip-reversed phase
8
phase encoding
8
field map
8

Similar Publications

Age-related macular degeneration (AMD) is a progressive, chronic eye disease with no permanent cure currently available. Symptoms of the disease, including distorted and blurred vision and gradual loss of central vision, significantly aggravate patients' daily functioning. The purpose of this study was to assess the acceptance of the disease among patients diagnosed with neovascular age-related macular degeneration before treatment and after receiving seven intravitreal injections and to determine how it was related to the values of visual parameters.

View Article and Find Full Text PDF

Objects project different images when viewed from varying locations, but the visual system can correct perspective distortions and identify objects across viewpoints. This study investigated the conditions under which the visual system allocates computational resources to construct view-invariant, extraretinal representations, focusing on planar symmetry. When a symmetrical pattern lies on a plane, its symmetry in the retinal image is degraded by perspective.

View Article and Find Full Text PDF

Automated Audit and Self-Correction Algorithm for Seg-Hallucination Using MeshCNN-Based On-Demand Generative AI.

Bioengineering (Basel)

January 2025

Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.

Recent advancements in deep learning have significantly improved medical image segmentation. However, the generalization performance and potential risks of data-driven models remain insufficiently validated. Specifically, unrealistic segmentation predictions deviating from actual anatomical structures, known as a Seg-Hallucination, often occur in deep learning-based models.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

Objective: To study and correlate the clinicopathological findings of Solitary Rectal Ulcer Syndrome (SRUS) in 10 pediatric patients.

Material And Methods: This study is a retrospective study of patients from January 2017 to June 2024. The clinical records were reviewed for details of the clinical presentation, colonoscopic findings, associated local and systemic diseases, and other investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!