Machine learning techniques, specifically gradient-enhanced Kriging (GEK), have been implemented for molecular geometry optimization. GEK-based optimization has many advantages compared to conventional-step-restricted second-order truncated expansion-molecular optimization methods. In particular, the surrogate model given by GEK can have multiple stationary points, will smoothly converge to the exact model as the number of sample points increases, and contains an explicit expression for the expected error of the model function at an arbitrary point. Machine learning is, however, associated with abundance of data, contrary to the situation desired for efficient geometry optimizations. In this paper, we demonstrate how the GEK procedure can be utilized in a fashion such that in the presence of few data points, the surrogate surface will in a robust way guide the optimization to a minimum of a potential energy surface. In this respect, the GEK procedure will be used to mimic the behavior of a conventional second-order scheme but retaining the flexibility of the superior machine learning approach. Moreover, the expected error will be used in the optimizations to facilitate restricted-variance optimizations. A procedure which relates the eigenvalues of the approximate guessed Hessian with the individual characteristic lengths, used in the GEK model, reduces the number of empirical parameters to optimize to two: the value of the trend function and the maximum allowed variance. These parameters are determined using the extended Baker (e-Baker) and part of the Baker transition-state (Baker-TS) test suites as a training set. The so-created optimization procedure is tested using the e-Baker, full Baker-TS, and S22 test suites, at the density functional theory and second-order Møller-Plesset levels of approximation. The results show that the new method is generally of similar or better performance than a state-of-the-art conventional method, even for cases where no significant improvement was expected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304864 | PMC |
http://dx.doi.org/10.1021/acs.jctc.0c00257 | DOI Listing |
Shock
January 2025
Department of Industrial and Systems Engineering, University of Florida, P.O. Box 116595, Gainesville, FL, 32611, USA.
Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to inform digital twin models of critical illness. This study aims to identify common clinical trajectories based on dynamic assessment of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients with sepsis admitted to ICUs of Mayo Clinic Hospitals over eight-year period. Patient trajectories were modeled from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespiratory support in ICU and hospital discharge status.
View Article and Find Full Text PDFShock
January 2025
Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 599 Taylor Road, Room 209, Piscataway, NJ, USA 08854.
Introduction: Coagulopathy following traumatic injury impairs stable blood clot formation and exacerbates mortality from hemorrhage. Understanding how these alterations impact blood clot stability is critical to improving resuscitation. Furthermore, the incorporation of machine learning algorithms to assess clinical markers, coagulation assays and biochemical assays allows us to define the contributions of these factors to mortality.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK.
Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.
Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.
ACS Nano
January 2025
James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.
Phonon dynamics and transport determine how heat is utilized and dissipated in materials. In 2D systems for optoelectronics and thermoelectrics, the impact of nanoscale material structure on phonon propagation is central to controlling thermal conduction. Here, we directly observe in-plane coherent acoustic phonon propagation in black phosphorus (BP) using ultrafast electron microscopy.
View Article and Find Full Text PDFSoft comput
October 2024
Department of Instrumentation and Control Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, India.
[This retracts the article DOI: 10.1007/s00500-022-06818-1.].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!