The current study was designed to further clarify the influence of brain morphology, sleep oscillatory activity and age on memory consolidation. Specifically, we hypothesized, that a smaller volume of hippocampus, parahippocampal and medial prefrontal cortex negatively impacts declarative, but not procedural, memory consolidation. Explorative analyses were conducted to demonstrate whether a decrease in slow-wave activity negatively impacts declarative memory consolidation, and whether these factors mediate age effects on memory consolidation. Thirty-eight healthy participants underwent an acquisition session in the evening and a retrieval session in the morning after night-time sleep with polysomnographic monitoring. Declarative memory was assessed with the paired-associate word list task, while procedural memory was tested using the mirror-tracing task. All participants underwent high-resolution magnetic resonance imaging. Participants with smaller hippocampal, parahippocampal and medial prefrontal cortex volumes displayed a reduced overnight declarative, but not procedural memory consolidation. Mediation analyses showed significant age effects on overnight declarative memory consolidation, but no significant mediation effects of brain morphology on this association. Further mediation analyses showed that the effects of age and brain morphology on overnight declarative memory consolidation were not mediated by polysomnographic variables or sleep electroencephalogram spectral power variables. Thus, the results suggest that the association between age, specific brain area volume and overnight memory consolidation is highly relevant, but does not necessarily depend on slow-wave sleep as previously conceptualized.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jsr.13062DOI Listing

Publication Analysis

Top Keywords

memory consolidation
36
declarative memory
20
overnight declarative
16
medial prefrontal
12
brain morphology
12
procedural memory
12
memory
11
consolidation
9
parahippocampal medial
8
prefrontal cortex
8

Similar Publications

Hippocampal DNA methylation promotes contextual fear memory persistence by facilitating systems consolidation and cortical engram stabilization.

Biol Psychiatry

January 2025

Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany. Electronic address:

Background: Long-term fear memory storage involves gradual reorganization of supporting brain regions over time, a process termed systems consolidation. Memories initially rely on the hippocampus but gradually shift dependence to the neocortex. Although hippocampal activity drives this transfer, the molecular basis of systems consolidation is largely unknown.

View Article and Find Full Text PDF

Fear generalization, a lack of discrimination between safe and unsafe cues, is a hallmark of posttraumatic stress disorder. The phosphodiesterase 5 (PDE5) regulates the cyclic guanosine monophosphate (cGMP) pathway, which has been proposed to be involved in fear memory generalization. However, whether PDE5 activity underlies fear memory generalization remains unexplored.

View Article and Find Full Text PDF

Interplay of epilepsy and long-term potentiation: implications for memory.

Front Neurosci

January 2025

Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.

The interplay between long-term potentiation (LTP) and epilepsy represents a crucial facet in understanding synaptic plasticity and memory within neuroscience. LTP, a phenomenon characterized by a sustained increase in synaptic strength, is pivotal in learning and memory processes, particularly in the hippocampus. This review delves into the intricate relationship between LTP and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin to those seen in LTP contribute to the hyperexcitable state of epilepsy.

View Article and Find Full Text PDF

Human sleep and immunity: The role of circadian patterns.

Handb Clin Neurol

January 2025

Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia, Chile. Electronic address:

It is well established that sleep promotes health and welfare. Literature data suggests that sleep is a recurrent resting state that performs multiple biological functions, such as memory consolidation and regulation of glucose, lipid metabolism, energy metabolism, eating behavior, and blood pressure, besides, regulating the immune system. These immunological functions depend on regular sleep and circadian rhythms, as both impact the magnitude of immune responses.

View Article and Find Full Text PDF

Limited research has examined the effect of meal composition on sleep. Based on previous research, we hypothesized that a low glycemic index (LGI) drink containing 50 g isomaltulose (Palatinose, GI = 32) would result in more N3 sleep, less rapid eye movement (REM) sleep, and better memory consolidation than a high glycemic index (HGI) drink containing 50 g glucose (GI = 100). Healthy males (n = 20) attended the laboratory on three occasions at least a week apart (one acclimatization night and two test nights).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!