Enzyme-catalyzed acylation improves gel properties of rapeseed protein isolate.

J Sci Food Agric

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, P. R. China.

Published: August 2020

Background: Although rapeseed protein isolate (RPI) possessed some good functional properties, the use of RPI as an ingredient in the food industry is restricted mainly due to its inferior gelation. The purpose of this study was to improve the heat-induced gel properties of RPI using double processes of acylation and additional transglutaminase catalysis.

Results: Scanning electron microscopy showed that the gel formed by native RPI exhibited randomly aggregated particulate network structures whereas transglutaminase (TG)-assisted RPI gels significantly improved gelation properties. More importantly, the combined modifications of RPI using TG-assisted acylation can form a gel with unique percolating and small porous structure. Furthermore, TG-catalyzed 5% acylated RPI gel (100 U g , protein basis) exhibited excellent gel properties in terms of gel strength, thermal stability, surface roughness and apparent viscosity compared to non-treated or single modification of RPI gel as determined by texture analyzer, atomic force microscopy and rheometer. Mechanistically, Fourier-transform infrared spectra and gel dissociation test revealed that TG-catalyzed acylation extensively unfolded the hydrophobic and sulfhydryl residues of RPI, in turn, reinforced re-assembly of protein molecules via hydrophobic interactions and disulfide bonds during gel formation.

Conclusion: Combined processes of acylation and additional TG catalysis improved the thermal gelation properties by altering inter- and intra-protein structures. Such sequential processes will provide a promising approach to improve the protein gelation that could be potentially applied in the food industry. © 2020 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.10457DOI Listing

Publication Analysis

Top Keywords

gel properties
12
gel
10
rpi
9
rapeseed protein
8
protein isolate
8
properties rpi
8
food industry
8
processes acylation
8
acylation additional
8
gelation properties
8

Similar Publications

Controlling the motion of molecular machines to influence higher-order structures is well-established in biological systems but remains a significant challenge for synthetic analogs. Herein, we aim to harness the mechanical switching of switchable molecular tweezers to modulate their self-assembly and produce stimuli-responsive organogels. We report a series of terpy(Pt-salphen) molecular tweezers functionalized with alkyl chains that act as low-molecular-weight gelators (LMWGs) in their open conformation.

View Article and Find Full Text PDF

Construction and characterisation of mung bean protein isolate/carboxymethyl konjac glucomannan sodium hydrogels: Gel properties, structural properties, microstructure, sodium salt release, and 3D printing.

Food Chem

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

This study proposed a hydrogel system using mung bean protein isolate (MPI) and carboxymethyl konjac glucomannan (CKGM). The effects of CKGM addition on the gel properties, structural characteristics, and Na loading capacity of the MPI-CKGM system were investigated. FTIR and molecular docking techniques demonstrated that MPI and CKGM formed hydrogels via hydrogen bonding interactions.

View Article and Find Full Text PDF

This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), Phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2 produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.

View Article and Find Full Text PDF

Chinese herbal medicine-inspired construction of multi-component hydrogels with antibacterial and wound-healing-promoting functions.

J Mater Chem B

January 2025

Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.

Chinese herbal medicine (CHM) has offered a great treasure and source of inspiration for developing innovative medicinal materials and therapy. In this work, inspired by the macroscopic compatibility of and in CHM, the puerarin (PUE) and CaSO (Ca) as the main constituents, respectively, from the two herbs are co-assembled into two-component molecular hydrogels. Such two-component gels exhibited enhanced mechanical properties compared with the single-component PUE gel due to the introduction of crosslinking hydrogen bonds between PUE and Ca.

View Article and Find Full Text PDF

Objective: Bladder tissue models have been developed using smooth muscle cells (SMCs) on various scaffolds to mimic bladder morphology and physiology. This study investigates the effects of co-culturing fetal and adult SMCs on growth properties and protein profiles to understand cellular interactions and population kinetics.

Methods: Bladder tissue samples from 10 adult and 10 fetal New Zealand rabbits were divided into 5 groups: adult SMCs (A), fetal SMCs (F), 50%A+50%F (A+F), 75%A+25%F (3A+F), and 25%A+75%F (A+3F).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!