Soft robots represent an emerging class of biologically-inspired machines that are primarily composed of elastomers, fluids, and other forms of soft matter. Current examples include crawling and swimming robots that exhibit the mobility, mechanical compliance, and deformability of various classes of soft biological organisms, ranging from cephalopods and larvae to marine fish and reptiles. Rather than using electrical motors, soft robots are powered with "artificial muscle" actuators that change shape and stiffness in response to controlled stimulation. In recent years, conductive shape memory materials have become especially popular for soft robot actuation due to the ability to stimulate these materials with on-board microelectronics and miniature batteries. Here, we review recent progress in the development of artificial muscle using shape memory materials that can be stimulated through electrical activation. This includes the use of shape memory alloy (SMA) to create fully untethered soft robots capable of biologically-relevant locomotion speeds as well as recent progress in engineering liquid crystal elastomer (LCE) composites that are capable of robust electrically-powered actuation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0tb00392a | DOI Listing |
Sci Rep
December 2024
Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India.
A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.
View Article and Find Full Text PDFGenome Biol
December 2024
Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.
Cell types are traditionally thought to be specified and stabilized by gene regulatory networks. Here, we explore how chromatin memory contributes to the specification and stabilization of cell states. Through pervasive, local, feedback loops, chromatin memory enables cell states that were initially unstable to become stable.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA.
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (>1 Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting state ( = 926, 473 females).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!