A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of extensional rheology in the oral phase of swallowing: an in vitro study. | LitMetric

The role of extensional rheology in the oral phase of swallowing: an in vitro study.

Food Funct

Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK.

Published: May 2020

Swallowing disorders deteriorate significantly the quality of life and can be life-threatening. Texture modification using shear thinning food thickeners has been proven to be effective in the management of dysphagia. Some studies have recently considered the positive role of cohesiveness, but there is still an insufficient understanding of the effect of the rheological properties of the liquid bolus on the dynamics of bolus transport, particularly when elasticity and extensional properties are combined with a shear thinning behaviour. This study combines steady shear, SAOS and capillary breakage extensional rheometry with an in vitro method to characterize the oral transport of viscoelastic liquids. Bolus velocity and bolus length were measured from exit in vitro experiments using image analysis and related to shear and extensional properties. A theory describing the bolus dynamics shows that the elastic and extensional properties do not influence significantly the oral transit dynamics. Conversely, in vitro results suggest that the extensional properties can affect the transition from the oral to the pharyngeal phase of swallowing, where thin, viscoelastic liquids lead to a fast transit, lower oral post-swallow residues and more compact bolus with a smoother surface, which may suggest a lower risk of fragmentation. This mechanistic explanation suggests that the benefit of the extensional properties of thin viscoelastic liquids in the management of dysphagia should be further evaluated in clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9fo02327eDOI Listing

Publication Analysis

Top Keywords

extensional properties
20
viscoelastic liquids
12
phase swallowing
8
shear thinning
8
management dysphagia
8
bolus dynamics
8
thin viscoelastic
8
properties
6
bolus
6
extensional
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!