Biomechanical study of space frame structure based on bone cement screw.

Exp Ther Med

Department of Orthopaedics, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China.

Published: June 2020

Stability of space frame structures with bone cement screw reinforcement by biomechanical testing was analyzed. Seven complete human spine specimens with osteoporosis were selected. Three specimens were separated into 18 vertebral bodies. Nine vertebral bodies were randomly selected and bone cement screws were implanted on both sides. Bone cement was used to form a bridge at the front end of the two screws (single vertebral group A). The other nine vertebral bodies were implanted with cement screws on both sides, but the front ends of the two screws were not bridged (single vertebral group B). The remaining spine specimens were used for biomechanical testing of the overall stability of the three-dimensional frame. The four specimens were osteotomized, and then two specimens were randomly selected. Bone cement screws were implanted on both sides of the vertebral body, and a bone cement bridge was formed at the front end of the two screws to establish a three-dimensional frame structure (multi-vertebral group A). The other two spine specimens were implanted with cement screws on both sides of the vertebral body, but the front ends of the two screws were not bridged (multi-vertebral group B). A statistical difference was found between the extractive force of bridged and non-bridged specimens. Group B showed some loosening of screws after the test. The stability of the triangle structure screw, which was formed after the bridge was established at the front end of the single-vertebral bone cement screw, was significantly enhanced. Moreover, the stability was significantly improved after the three-dimensional frame structure was established in the multi-vertebral body group, providing a new method for clinical improvement of the stability and reliability of internal fixation in patients with severe osteoporosis and spinal disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197252PMC
http://dx.doi.org/10.3892/etm.2020.8659DOI Listing

Publication Analysis

Top Keywords

bone cement
28
cement screws
16
frame structure
12
cement screw
12
spine specimens
12
vertebral bodies
12
three-dimensional frame
12
cement
9
screws
9
space frame
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!