Is nanoparticle functionalization a versatile approach to meet the challenges of drug and gene delivery?

Ther Deliv

Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.

Published: July 2020

Download full-text PDF

Source
http://dx.doi.org/10.4155/tde-2020-0030DOI Listing

Publication Analysis

Top Keywords

nanoparticle functionalization
4
functionalization versatile
4
versatile approach
4
approach meet
4
meet challenges
4
challenges drug
4
drug gene
4
gene delivery?
4
nanoparticle
1
versatile
1

Similar Publications

In this study, the endophytic fungus Coniothyrium chaingmaiense-KUMBMDBT-25 was isolated from the healthy stem of Euphorbia tirucalli, mass cultivated by submerged fermentation, and extracted using ethyl acetate as a solvent. The extract was subjected to GC-MS analysis. The synthesized Con-AgNPs were characterized through various bioanalytical methods.

View Article and Find Full Text PDF

Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.

View Article and Find Full Text PDF

Collagen nanoparticles (collagen-NPs) possess numerous applications owing to their minimal immunogenicity, non-toxic nature, excellent biodegradability and biocompatibility. This study presents a novel sustainable technique for one-step green synthesis of hydrolyzed fish collagen-NPs (HFC-NPs) using a hot-water extract of Ulva fasciata biomass. HFC-NPs were characterized using TEM, FTIR, XRD, ζ-potential analyses, etc.

View Article and Find Full Text PDF

Long afterglow hybrid nanoplatform for integrated NIR-Ⅱ imaging diagnosis and triple-synergistic treatment of choroidal melanoma.

Talanta

December 2024

The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

The key to the treatment of choroidal melanoma (CM) is to improve diagnostic efficiency and find a high-performance treatment to replace the traditional treatment of radiotherapy and enucleation. In this paper, for the first time, long afterglow luminescence material was applied to the integrated diagnosis and treatment of eyes, with its unique advantages in photoluminescence and afterglow luminescence to solve the bottleneck problem of real-time irradiation required for photothermal and photodynamic therapy (PTT and PDT). Based on the excellent photoluminescence and afterglow properties of ZnGaGeO:CrYbEr (ZGGO) nanoparticles, a nanoplatform ZGGO@Au@UiO-66@ZnPc:Dox-FA (GAUZD-FA) for NIR-Ⅱ imaging and triple-synergistic therapy (PTT, PDT and sustained-release drug) was constructed.

View Article and Find Full Text PDF

Gold nanoparticles supported onto zwitterionic polymer capillary monoliths meant for efficient enrichment of microcystins in water.

Talanta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou, 350116, Fuzhou University, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350116, China. Electronic address:

The release of microcystin (MCs) in aquatic ecosystems poses a substantial risk to the safety of irrigation and drinking water. In view of the challenges associated with monitoring MCs in water bodies, given their low concentration levels (μg/L to ng/L) and the presence of diverse matrix interferences, there is an urgent need to develop an efficient, cost-effective and selective enrichment technique for MCs prior to its quantification. In this work, a gold nanoparticles (AuNPs)-functionalized zwitterionic polymer monolith was described and further applied for the affinity enrichment of MCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!