Background: Coronary microvascular dysfunction (CMD) is present in various non-ischemic cardiomyopathies and in particular in those with left-ventricular hypertrophy. This study evaluated the diagnostic value of the novel cardiovascular magnetic resonance (CMR) parameter "myocardial transit-time" (MyoTT) in distinguishing cardiac amyloidosis from other hypertrophic cardiomyopathies.
Methods: N = 20 patients with biopsy-proven cardiac amyloidosis (CA), N = 20 patients with known hypertrophic cardiomyopathy (HCM), and N = 20 control patients without relevant cardiac disease underwent dedicated CMR studies on a 1.5-T MR scanner. The CMR protocol comprised cine and late-gadolinium-enhancement (LGE) imaging as well as first-pass perfusion acquisitions at rest for MyoTT measurement. MyoTT was defined as the blood circulation time from the orifice of the coronary arteries to the pooling in the coronary sinus (CS) reflecting the transit-time of gadolinium in the myocardial microvasculature.
Results: MyoTT was significantly prolonged in patients with CA compared to both groups: 14.8 ± 4.1 s in CA vs. 12.2 ± 2.5 s in HCM (p = 0.043) vs. 7.2 ± 2.6 s in controls (p < 0.001). Native T1 and extracellular volume (ECV) were significantly higher in CA compared to HCM and controls (p < 0.001). Both parameters were associated with a higher diagnostic accuracy in predicting the presence of CA compared to MyoTT: area under the curve (AUC) for native T1 = 0.93 (95% confidence interval (CI) = 0.83-1.00; p < 0.001) and AUC for ECV = 0.95 (95% CI = 0.88-1.00; p < 0.001)-compared to the AUC for MyoTT = 0.76 (95% CI = 0.60-0.92; p = 0.008). In contrast, MyoTT performed better than all other CMR parameters in differentiating HCM from controls (AUC for MyoTT = 0.93; 95% CI = 0.81-1.00; p = 0.003 vs. AUC for native T1 = 0.69; 95% CI = 0.44-0.93; p = 0.20 vs. AUC for ECV = 0.85; 95% CI = 0.66-1.00; p = 0.017).
Conclusion: The relative severity of CMD (measured by MyoTT) in relationship to extracellular changes (measured by native T1 and/or ECV) is more pronounced in HCM compared to CA-in spite of a higher absolute MyoTT value in CA patients. Hence, MyoTT may improve our understanding of the interplay between extracellular/intracellular and intravasal changes that occur in the myocardium during the disease course of different cardiomyopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806531 | PMC |
http://dx.doi.org/10.1007/s00392-020-01661-6 | DOI Listing |
Can J Cardiol
January 2025
Brigham and Women's Hospital Amyloidosis Program and Section of Cardiology, Brigham and Women's Hospital, Boston MA 02115 USA; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
AF is a common arrhythmia in cardiomyopathy, particularly when congestive heart failure is present. The neurohormonal activation in congestive heart failure may trigger fibrotic and other changes in the left atrium and the atrial stretch associated with heart failure may induce further atrial pathology and/ or directly trigger AF (8). By the time that patients with AF develop extensive fibrosis, the arrhythmia has been shown to be associated with a greater difficulty in maintaining sinus rhythm despite attempted ablation procedures.
View Article and Find Full Text PDFIndian Pacing Electrophysiol J
January 2025
Royal Jubilee Hospital, Vancouver Island Health Authority, British Columbia, Canada.
Transthyretin Cardiac amyloidosis (ATTR-CA) is an increasingly recognised cause of heart failure in our elderly patients with preserved ejection fraction. Patients with ATTR-CA who require permanent pacemaker implantation often have preserved ejection fraction and do not meet the clinical indication for cardiac resynchronization therapy (CRT). In these patients, left bundle branch area pacing (LBBAP) can be a reasonable option to maximise physiological activation of the left ventricle.
View Article and Find Full Text PDFNeurol Ther
January 2025
Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
Hereditary transthyretin amyloidosis (ATTRv, v for variant) is a genetic disorder characterized by the deposition of misfolded transthyretin (TTR) protein in tissues, resulting in progressive dysfunction of multiple organs, including the nervous system, heart, kidneys, and gastrointestinal (GI) tract. Noninvasive serum biomarkers have become key tools for diagnosing and monitoring ATTRv. This review examines the role of available biomarkers for neurological, cardiac, renal, gastrointestinal, and multisystemic involvement in ATTRv.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) leveraging endophenotypes beyond case/control diagnosis, such as brain amyloid β pathology, have shown promise in identifying novel variants and understanding their potential functional impact. In this study, we leverage two brain amyloid β pathology measurement modalities, PET imaging and neuropathology, to address sample size limitations and to discover novel genetic drivers of disease.
Method: We conducted a meta-analysis on an amyloid PET imaging GWAS (N = 7,036, 35% amyloid positive, 53.
Alzheimers Dement
December 2024
Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!