Grain boundaries have been established to impact charge transport, recombination and thus the power conversion efficiency of metal halide perovskite thin film solar cells. As a special category of grain boundaries, ferroelastic twin boundaries have been recently discovered to exist in both CHNHPbI thin films and single crystals. However, their impact on the carrier transport and recombination in perovskites remains unexplored. Here, using the scanning photocurrent microscopy, we find that twin boundaries have negligible influence on the carrier transport across them. Photoluminescence (PL) imaging and the spatial-resolved PL intensity and lifetime scanning confirm the electronically benign nature of the twin boundaries, in striking contrast to regular grain boundaries which block the carrier transport and behave as the non-radiative recombination centers. Finally, the twin-boundary areas are found still easier to degrade than grain interior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200693 | PMC |
http://dx.doi.org/10.1038/s41467-020-16075-1 | DOI Listing |
Nanoscale
December 2024
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
Many spectacular nanotwinned Cu (nt-Cu) properties depend on the spacing of adjacent twin boundaries (TBs) inside crystal grains. The average TB spacing is typically 10-100 nm in electrodeposited nt-Cu films. This study employed template-assisted electrodeposition to grow nt-Cu nanowires with high-density TBs (average TB spacing <5 nm).
View Article and Find Full Text PDFComput Biol Med
December 2024
Research Center E. Piaggio, University of Pisa, L. Lazzarino, 1, Pisa, 56122, Italy; Information Engineering Department, University of Pisa, G. Caruso, 16, Pisa, 56122, Italy.
In this paper, we present CardioMat, a Matlab toolbox for cardiac electrophysiology simulation based on patient-specific anatomies. The strength of CardioMat is the easy and fast construction of electrophysiology cardiac digital twins from segmented anatomical images in a general-purpose software such as Matlab. CardioMat implements a quasi-automatic pipeline that guides the user toward the construction of anatomically detailed cardiac electrophysiology models.
View Article and Find Full Text PDFNature
December 2024
PSI Center for Photon Science, Villigen, Switzerland.
The functionality of materials is determined by their composition and microstructure, that is, the distribution and orientation of crystalline grains, grain boundaries and the defects within them. Until now, characterization techniques that map the distribution of grains, their orientation and the presence of defects have been limited to surface investigations, to spatial resolutions of a few hundred nanometres or to systems of thickness around 100 nm, thus requiring destructive sample preparation for measurements and preventing the study of system-representative volumes or the investigation of materials under operational conditions. Here we present X-ray linear dichroic orientation tomography (XL-DOT), a quantitative, non-invasive technique that allows for an intragranular and intergranular characterization of extended polycrystalline and non-crystalline materials in three dimensions.
View Article and Find Full Text PDFClin Spine Surg
December 2024
Department of Neurological Surgery.
One recent innovation in the health care landscape is the integration of Digital Twin (DT) in the field of spine surgery. DT, first used in 2002 is defined as the replication of physical entities in a virtual environment. It has emerged as a transformative tool for optimizing complex systems.
View Article and Find Full Text PDFRSC Adv
November 2024
Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology Ganzhou 341000 China
Electroplating additives play a key role in enhancing the physical and chemical performances of electrodeposited copper foils. Currently, a lot of research on polyethylene glycol (PEG) additives has been reported on the metallisation interconnections for printed circuit boards (PCBs); however, research on its applications for electrodeposited copper foils is rarely documented. Herein, high-quality copper foils with high tensile strength (433.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!