Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Esophageal squamous cell carcinoma (ESCC) is a disease characterized by a high mutation rate of the gene, which plays pivotal roles in the DNA damage response (DDR) and is regulated by checkpoint kinase (CHK) 2. CHK1 is another key DDR-related protein, and its selective inhibition is suggested to be particularly sensitive to -mutated cancers, because a loss of both pathways (CHK1 and/or CHK2-p53) is lethal due to the serious impairment of DDR. Such a therapeutic strategy is termed synthetic lethality. Here, we propose a novel therapeutic strategy based on synthetic lethality combining trifluridine/tipiracil and prexasertib (CHK1 inhibitor) as a treatment for ESCC. Trifluridine is a key component of the antitumor drug combination with trifluridine/tipiracil (an inhibitor of trifluridine degradation), also known as TAS-102. In this study, we demonstrate that trifluridine increases CHK1 phosphorylation in ESCC cells combined with a reduction of the S-phase ratio as well as the induction of ssDNA damage. Because CHK1 phosphorylation is considered to be induced as DDR for trifluridine-mediated DNA damage, we examined the effects of CHK1 inhibition on trifluridine treatment. Consequently, CHK1 inhibition by short hairpin RNA or treatment with the CHK1 inhibitor, prexasertib, markedly enhanced trifluridine-mediated DNA damage, represented by an increase of γH2AX expression. Moreover, the combination of trifluridine/tipiracil and CHK1 inhibition significantly suppressed tumor growth of ESCC-derived xenograft tumors. Furthermore, the combination of trifluridine and prexasertib enhanced radiosensitivity both and Thus, the combination of trifluridine/tipiracil and a CHK1 inhibitor exhibits effective antitumor effects, suggesting a novel therapeutic strategy for ESCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-19-0918 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!