Generation of RUNX1-null reporter human embryonic stem cell line GIBHe008-A.

Stem Cell Res

Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: May 2020

RUNX1/AML1/CBFA2 (runt-related transcription factor 1/acute myeloid leukemia 1 protein/core-binding factor subunit alpha-2), is a transcription factor that plays a critical role in the development of normal hematopoiesis. RUNX1 is also essential for the development of immune cells and sensory neurons. Chromosomal translocations involving the gene have been associated with several types of leukemia. To investigate the role of RUNX1 in human hematopoietic development we generated RUNX1-null human embryonic stem cell reporter line GIBHe008-A by TALEN mediated homologous recombination. This cell line GIBHe008-A was subjected to detailed characterization by standard assays for human pluripotent stem cells. It provides an ideal model to study the role of RUNX1 in the hESC-derived developmental models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2020.101800DOI Listing

Publication Analysis

Top Keywords

human embryonic
8
embryonic stem
8
stem cell
8
cell gibhe008-a
8
transcription factor
8
role runx1
8
generation runx1-null
4
runx1-null reporter
4
human
4
reporter human
4

Similar Publications

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Endocrine disruptor chemicals exposure and female fertility declining: from pathophysiology to epigenetic risks.

Front Public Health

December 2024

PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardie Jules Verne, CEDEX 1, Amiens, France.

Over the last decades, human infertility has become a major concern in public health, with severe societal and health consequences. Growing evidence shows that endocrine disruptors chemicals (EDCs) have been considered as risk factors of infertility. Their presence in our everyday life has become ubiquitous because of their universal use in food and beverage containers, personal care products, cosmetics, phytosanitary products.

View Article and Find Full Text PDF

Myo-inositol improves developmental competence and reduces oxidative stress in porcine parthenogenetic embryos.

Front Vet Sci

December 2024

Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea.

Objective: Myo-inositol (Myo-Ins), the most abundant form of inositol, is an antioxidant and plays a crucial role in the development and reproduction of mammals and humans. However, information elucidating the role of Myo-Ins in porcine embryonic development after parthenogenetic activation (PA) is still lacking. Therefore, we investigated the effect of Myo-Ins on porcine embryos and its underlying mechanisms.

View Article and Find Full Text PDF

Background: Preeclampsia (PE) is a pregnancy complication characterized by hypertension, proteinuria, endothelial dysfunction, and complement dysregulation. Placenta-derived extracellular vesicles (EVs), necessary in maternal-fetal communication, might contribute to PE pathogenesis. Moreover, neutrophil extracellular traps (NETs) play a pathogenic role in other complement-mediated pathologies, and their contribution in PE remains unexplored.

View Article and Find Full Text PDF

Microdissection and Single-Cell Suspension of Neocortical Layers From Ferret Brain for Single-Cell Assays.

Bio Protoc

December 2024

Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.

Brain development is highly complex and dynamic. During this process, the different brain structures acquire new components, such as the cerebral cortex, which builds up different germinal and cortical layers during its development. The genetic study of this complex structure has been commonly approached by bulk-sequencing of the entire cortex as a whole.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!