A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mercury methylation potential in a sand dune on Lake Michigan's eastern shoreline. | LitMetric

Mercury methylation potential in a sand dune on Lake Michigan's eastern shoreline.

Sci Total Environ

Department of Chemistry, Oakland University, Rochester, MI 48309, USA. Electronic address:

Published: August 2020

Lake Michigan hosts the largest freshwater sand dune system in the world and is economically important for the fishery industry and tourism. Due to industrial pollution and atmospheric mercury (Hg) deposition, toxic levels of methylmercury (MeHg) have been found in the Lake biota, but little information is known regarding MeHg sources and Hg methylation potential in the shoreline sand dunes. We conducted anaerobic incubation experiments with beach sands collected from Ludington, Michigan, and examined the effects of organic carbon substrate addition, inorganic nitrogen, and mineral magnetite on Hg methylation. Despite nutrient poor and low-organic carbon conditions, appreciable Hg methylation activity coupled with carbon degradation was observed in the sands. Addition of acetate as a carbon source substantially increased MeHg production from 2 to 380 ng/kg sediment while acetate was rapidly degraded in the first 19 days of incubation. Ammonium addition showed little influence on carbon degradation or Hg methylation, whereas iron oxide addition (~1% dry weight) significantly inhibited both carbon degradation and MeHg production (by up to 90%), highlighting strongly coupled interactions between microbes, carbon substrates, and minerals. This research demonstrates the potential of microbial Hg methylation in the sand dunes, which may play a role in MeHg input and bioaccumulation in the Lake Michigan ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138879DOI Listing

Publication Analysis

Top Keywords

carbon degradation
12
methylation potential
8
sand dune
8
lake michigan
8
sand dunes
8
mehg production
8
carbon
7
mehg
5
methylation
5
mercury methylation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!