Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lake Michigan hosts the largest freshwater sand dune system in the world and is economically important for the fishery industry and tourism. Due to industrial pollution and atmospheric mercury (Hg) deposition, toxic levels of methylmercury (MeHg) have been found in the Lake biota, but little information is known regarding MeHg sources and Hg methylation potential in the shoreline sand dunes. We conducted anaerobic incubation experiments with beach sands collected from Ludington, Michigan, and examined the effects of organic carbon substrate addition, inorganic nitrogen, and mineral magnetite on Hg methylation. Despite nutrient poor and low-organic carbon conditions, appreciable Hg methylation activity coupled with carbon degradation was observed in the sands. Addition of acetate as a carbon source substantially increased MeHg production from 2 to 380 ng/kg sediment while acetate was rapidly degraded in the first 19 days of incubation. Ammonium addition showed little influence on carbon degradation or Hg methylation, whereas iron oxide addition (~1% dry weight) significantly inhibited both carbon degradation and MeHg production (by up to 90%), highlighting strongly coupled interactions between microbes, carbon substrates, and minerals. This research demonstrates the potential of microbial Hg methylation in the sand dunes, which may play a role in MeHg input and bioaccumulation in the Lake Michigan ecosystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.138879 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!