Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery.

Eur J Pharm Biopharm

Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria. Electronic address:

Published: July 2020

The lipophilic character of peptides can be tremendously improved by hydrophobic ion pairing (HIP) with counterions to be efficiently incorporated into lipid-based nanocarriers (NCs). Herein, HIPs of exenatide with the cationic surfactant tetraheptylammonium bromide (THA) and the anionic surfactant sodium docusate (DOC) were formed to increase its lipophilicity. These HIPs were incorporated into lipid based NCs comprising 41% Capmul MCM, 15% Captex 355, 40% Cremophor RH and 4% propylene glycol. Exenatide-THA NCs showed a log D of 2.29 and 1.92, whereas the log D of exenatide-DOC was 1.2 and -0.9 in simulated intestinal fluid and Hanks' balanced salts buffer (HBSS), respectively. No significant hemolytic activity was induced at a concentration of 0.25% (m/v) of both blank and loaded NCs. Exenatide-THA NCs and exenatide-DOC NCs showed a 10-fold and 3-fold enhancement in intestinal apparent membrane permeability compared to free exenatide, respectively. Furthermore, orally administered exenatide-THA and exenatide-DOC NCs in healthy rats resulted in a relative bioavailability of 27.96 ± 5.24% and 16.29 ± 6.63%, respectively, confirming the comparatively higher potential of the cationic surfactant over the anionic surfactant. Findings of this work highlight the potential of the type of counterion used for HIP as key to successful design of lipid-based NCs for oral exenatide delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2020.04.025DOI Listing

Publication Analysis

Top Keywords

hydrophobic ion
8
ion pairing
8
ncs
8
cationic surfactant
8
anionic surfactant
8
exenatide-tha ncs
8
exenatide-doc ncs
8
pairing glp-1
4
glp-1 analogue
4
analogue incorporating
4

Similar Publications

The formation of natural gas hydrates presents significant economic and safety challenges to the petroleum and gas industry, necessitating the development of effective prevention strategies. This study investigates an environmentally sustainable Tenebrio molitor antifreeze protein (TmAFP) modified to be a potential kinetic hydrate inhibitor. The aim of this study was to enhance the inhibitory activity of TmAFP by systematically substituting threonine (Thr) residues with glycine (Gly), alanine (Ala), or serine (Ser) at positions 29, 39, and 53.

View Article and Find Full Text PDF

Nanoscale self-assembly and water retention properties of silk fibroin-riboflavin hydrogel.

J Chem Phys

January 2025

Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India.

Silk-fibroin hydrogels have gained considerable attention in recent years for their versatile biomedical applications. The physical properties of a complex hydrogel, comprising silk fibroin and riboflavin, surpass those of the silk fibroin-hydrogel without additives. This study investigates silk fibroin-riboflavin (silk-RIB) hydrogel at the atomistic level to uncover molecular structures and chemical characteristics specific to silk fibroin and riboflavin molecules in an aqueous medium.

View Article and Find Full Text PDF

The main aim of the study was to develop new fruit waste-derived activated carbons of high adsorption performance towards metals, metalloids, and polymers by the use of carbon dioxide (CO)-consuming, microwave-assisted activation. The authors compared morphology, surface chemistry, textural parameters, and elemental composition of precursors (chokeberry seeds, black currant seeds, orange peels), as well as biochars (BCs) and activated carbons (ACs) obtained from them. The adsorption mechanisms of metals (copper, cadmium), metalloids (arsenic, selenium), and macromolecular compounds (bacterial exopolysaccharide, ionic polyacrylamides) on the surface of selected materials were investigated in one- and two-component systems.

View Article and Find Full Text PDF

Background: Sporobolomyces pararoseus is a well-studied oleaginous red yeast that can synthesize a variety of high value-added bioactive compounds. Biofilm is one of the important biological barriers for microbial cells to resist environmental stresses and maintain stable fermentation process. Here, the effect of acidic conditions on the biosynthesis of biofilms in S.

View Article and Find Full Text PDF

On Diffusiophoresis of a Soft Particle with a Hydrophobic Inner Core: A Semianalytical Study.

Langmuir

January 2025

Faculty of Pharmaceutical Sciences, Tokyo University of Sciences, 2461 Yamazaki Noda, Chiba 278-8510, Japan.

The current study deals with a theoretical analysis of diffusiophoresis of a soft particle, consisting of a hydrophobic charged rigid core coated with an ion- and fluid-penetrable charged polymer layer suspending in an electrolyte medium in reaction to an applied concentration gradient. The inner core's hydrophobicity is assumed to be characterized by a surface-charge-dependent slip length parameter. Based on a weak particle charge consideration, the governing equations describing the flow phenomena are solved theoretically to deduce a semianalytic general diffusiophoretic mobility expression applied to an arbitrary Debye layer thickness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!