Background: It is widely hoped that personal cancer vaccines will extend the number of patients benefiting from checkpoint and other immunotherapies. However, it is clear creating such vaccines will be challenging. It requires obtaining and sequencing tumor DNA/RNA, predicting potentially immunogenic neoepitopes and manufacturing a one-use vaccine. This process takes time and considerable cost. Importantly, most mutations will not produce an immunogenic peptide and many patient's tumors do not contain enough DNA mutations to make a vaccine. We have discovered that frameshift peptides (FSP) created from errors in the production of RNA rather than from DNA mutations are potentially a rich source of neoantigens for cancer vaccines. These errors are predictable, enabling the production of a FSP microarray. Previously we found that these microarrays can identify both personal and shared neoantigens. Here, we compared the performance of personal cancer vaccines (PCVs) with that of a shared antigen vaccine, termed Frameshift Antigen Shared Therapeutic (FAST) vaccine, using the 4 T1 breast cancer model. Sera from 4 T1-tumor bearing mice were assayed on the peptide microarray containing 200 Fs neoantigens, for the PCV, the top 10 candidates were select and personal vaccines constructed and administrated to the respective mice. For the FAST, we selected the top 10 candidates with higher prevalence among all the mice challenged. Seven to 12 days challenged mice were immunized, combined or not with immune checkpoint inhibitor (ICI) (αPD-L1 and αCTLA-4). Primary and secondary tumor clearance and growth were evaluated as well as cellular and humoral immune response against the vaccine targets by IFN-γ ELISPOT and ELISA. Lastly, we analyzed the immune response of the FAST-vaccinated mice by flow cytometry in comparison to the control group.
Results: We found that PCVs and FAST vaccines both reduced primary tumor incidence and growth as well as lung metastases when delivered as monotherapies or in combination with ICI. Additionally, the FAST vaccine induces a robust and effective T-cell response.
Conclusions: These results suggest that FSPs produced from RNA-based errors are potent neoantigens that could enable production of off-the-shelf shared antigen vaccines for solid tumors with efficacy comparable to that of PCVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201681 | PMC |
http://dx.doi.org/10.1186/s12865-020-00350-3 | DOI Listing |
Int J Surg
October 2024
Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia.
Cervical cancer ranks as the fourth most common cancer among women globally, posing a significant mortality risk. Persistent infection with high-risk human papillomavirus (HPV) is the primary instigator of cervical cancer development, often alongside co-infection with other viruses, precipitating various malignancies. This study aimed to explore recent biotechnological advances in understanding HPV infection dynamics, host interactions, and its role in oncogenesis.
View Article and Find Full Text PDFAntigen uptake, processing, and presentation are crucial for the immune responses of protein-based vaccines. Herein, we introduced a reversible chemical cross-linking strategy to engineer protein antigens, which can be tracelessly removed upon antigen-presenting cell (APC) uptake and cellular reduction. The chemically cross-linked antigen proteins presented significantly enhanced uptake and epitope presentation by APC.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia.
Ongoing research and development efforts are currently focused on creating COVID-19 vaccines using a variety of platforms. Among these, mRNA technology stands out as a cuttingedge method for vaccine development. There is a growing public awareness of mRNA and its potential in vaccine development.
View Article and Find Full Text PDFCurr Gene Ther
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Lung cancer is a leading cause of mortality worldwide. Immunotherapy has emerged as a potentially effective strategy, as traditional medicines have shown minimal success. This review investigates the current state of immunotherapy for lung cancer treatment, focusing on its mechanisms, clinical applications, strategies, and future directions.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Computing and Information Technology, University of Embu, Embu, Kenya.
Introduction: Cervical cancer is the most diagnosed cancer and the leading cause of cancer-related death in 36 low- and middle-income countries, with the majority located in sub-Saharan Africa (SSA), South America and Southeastern Asia. The highest regional incidence and mortality occur in SSA. Despite the high efficacy and cost-effectiveness of the human papillomavirus (HPV) vaccine in preventing cervical cancer, its uptake remains unacceptably low in SSA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!