Remarkable progress has been made characterizing one of nature's most integrated, hierarchical structures--the fibrillar adhesive system of geckos. Nonetheless, we lack an understanding of how multiple toes coordinate to facilitate geckos' acrobatic locomotion. Here, we tested the control function of gecko toes by running them on vertical substrates varying in orientation, friction and roughness. Sideways wall-running geckos realigned the toes of their top feet upward to resist gravity. Toe contact area was not compromised, but redistributed. Geckos aligned all toes upward to resist slipping when encountering low-friction patches during sideways wall-running. Negotiation of intermittent slippery strips showed an increased contribution of particular toes to compensate for toes that lost adhesion. Increasing substrate roughness using discrete rods perpendicular to sideways locomotion resulted in geckos bending and/or rotating toes to conform to and even grasp the rods, with potential forces more than five times body weight. Geckos increase their effectiveness of manoeuvrability in demanding environments by taking advantage of the distributed control afforded by multiple toes. Our findings provide insight on biological attachment and offer inspiration to advance gecko-inspired robotics and other biomimetic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282914PMC
http://dx.doi.org/10.1098/rspb.2020.0123DOI Listing

Publication Analysis

Top Keywords

sideways wall-running
12
toes
9
distributed control
8
wall-running geckos
8
multiple toes
8
upward resist
8
geckos
6
role multiple
4
multiple adjustable
4
adjustable toes
4

Similar Publications

Remarkable progress has been made characterizing one of nature's most integrated, hierarchical structures--the fibrillar adhesive system of geckos. Nonetheless, we lack an understanding of how multiple toes coordinate to facilitate geckos' acrobatic locomotion. Here, we tested the control function of gecko toes by running them on vertical substrates varying in orientation, friction and roughness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!