A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Finite Systems under Pressure: Assessing Volume Definition Models from Parallel-Tempering Monte Carlo Simulations. | LitMetric

We have investigated different approaches to handling parallel-tempering Monte Carlo (PTMC) simulations in the isothermal-isobaric ensemble of molecular cluster/nanoparticle systems for predicting structural phase diagram transitions. We have implemented various methodologies that consist of treating pressure implicitly through its effect on the volume. Thus, the main problem in the simulations under nonzero pressure becomes the volume definition of the finite nonperiodic system, and we considered approaches based on the particles' coordinates. Various volume models, namely container-volume, particle-volume, average-volume, ellipsoids-volume, and convex hull-volume, were employed, and the required corrections for each of them in the Monte Carlo computations were introduced. Finally, we explored the effects of volume/pressure changes for all models on structural phase transitions of a test system, such as the small "icelike" (HO) water cluster. The temperature and pressure dependence of the cluster's heat capacity and energy-volume Pearson correlation coefficient were studied, phase diagrams were constructed using a multiple-histogram method, and attempts were made to identify phase transitions to particular cluster structures. Our results show significant differences between the employed volume models, and we discuss all pressure-induced, such as solid-solid-, solid-liquid-, and liquid-gas-like, phase transformations in the present study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c00881DOI Listing

Publication Analysis

Top Keywords

monte carlo
12
volume definition
8
parallel-tempering monte
8
structural phase
8
volume models
8
phase transitions
8
volume
5
phase
5
finite systems
4
pressure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!