Genome-Wide Association Analysis Identifies Candidate Genes Regulating Seed Number Per Silique in .

Plants (Basel)

School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: May 2020

AI Article Synopsis

  • Seed yield in Arabidopsis is influenced by seed weight and the number of seeds per silique, which involves silique number and seed number (SNS) per silique.
  • A genome-wide association study (GWAS) was conducted on 107 Arabidopsis accessions to find genes linked to SNS, identifying 38 significant SNP marker sites for further investigation.
  • Functional validation of one selected candidate gene revealed it as a positive regulator of SNS, showing that ovule initiation is crucial for maximizing seed number, indicating the need for more research on genes affecting this process.

Article Abstract

Seed weight and number ultimately determine seed yield. Arabidopsis seed number comprised of silique number and seed number per silique (SNS). Comparing seed development and weight, determinants of seed number remain largely uncharacterized. In this study, taking advantage of 107 available Arabidopsis accessions, genome-wide association analysis (GWAS) was employed to identify the candidate genes regulating SNS. GWAS-based genotype and phenotype association analysis identified 38 most significant SNPs marker sites that were mapped to specific chromosomal positions and allowed us to screen for dozens of candidate genes. One of them () was selected for functional validation based on gene expression analysis. It is a positive regulator of Arabidopsis SNS. Although silique length of loss of function mutant was not significantly changed, its SNS and seed density (SD) were significantly reduced as compared with the wild type. Notably, PIN3 overexpression lines driven by a placenta-specific promoter STK exhibited significantly shorter siliques, slightly reduced SNS, but significant increased SD compared with wild type, suggesting that PIN3 positively regulates SD through inducing ovule primordia initiation regardless of the placenta size. Ovule initiation determines the maximal possibility of SNS, and new genes and mechanism regulating SNS through modulating ovule initiation is worth further investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284809PMC
http://dx.doi.org/10.3390/plants9050585DOI Listing

Publication Analysis

Top Keywords

seed number
16
association analysis
12
candidate genes
12
genome-wide association
8
genes regulating
8
seed
8
number silique
8
regulating sns
8
compared wild
8
wild type
8

Similar Publications

Considering the significance of fenugreek as a valuable medicinal and food plant, assessing the genetic diversity of different populations of this species is essential for optimizing performance and adaptability to environmental conditions. This study aims to investigate genetic diversity and identify important phenotypic traits in various Iranian fenugreek accessions ("Mashhad", "Tehran", "Yazd", "Shiraz", "Birjand", "Isfahan", "Kerman", "Kalat", "Neyshabur"), an experiment was conducted in a randomized complete block design with three replications and nine treatments (accessions) in Iran. The results showed that the highest seed yield was observed in "Kalat" (120.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Soil seed bank (SSB) is valuable reserves of seeds hidden in the soil and are especially important for the preservation and establishment of vegetation under adverse environmental conditions. However, there is a lack of knowledge on the effects of restoration measures on SSB, especially in arid ecosystems. Here, we assess the impacts of oil mulching (1 and 3 years after mulching) and plantations (15-year-old) on the diversity and composition of SSB and aboveground vegetation (AGV) in comparison with those in non-restored areas (i.

View Article and Find Full Text PDF

Long-term human influence on the demography and genetic diversity of the hyperdominant Bertholletia excelsa in the Amazon Basin.

Curr Biol

January 2025

Department of Coevolution of Land Use and Urbanisation, Max Planck Institute of Geoanthropology, 07745 Jena, Germany; Department of Archaeology, Max Planck Institute of Geoanthropology, 07745 Jena, Germany; School of Archaeology, University of the Philippines, Quezon City 1101, the Philippines. Electronic address:

The Amazon rainforest is characterized by a limited number of hyperdominant trees that play an oversized role in its ecosystems, nutrient cycle, and rainfall production. Some of these, such as the Brazil nut, appear to have been intensively exploited and dispersed by Indigenous populations since their earliest arrival in this part of South America around 13,000 years ago. However, the genetic diversity-and geographic structure-of these species remains poorly understood, as does their exact relationship with past human land use.

View Article and Find Full Text PDF

Defensive Mechanisms of Likely Enhance Its Invasiveness as One of the World's Worst Alien Species.

Plants (Basel)

January 2025

Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kita 761-0795, Kagawa, Japan.

Kunth is native to tropical America and has invaded tropical and subtropical Asia and numerous Pacific Islands. It forms dense thickets and reduces native species diversity and populations in its introduced range. This invasive vine also seriously impacts many agricultural crops and is listed as one of the world's 100 worst invasive alien species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!