The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a lethal zoonotic pathogen circulating in the Arabian Peninsula since 2012. There is no vaccine for MERS and anti-viral treatment is generally not applicable. We investigated the evolution of the MERS-CoV spike gene sequences and changes in viral loads over time from patients in Saudi Arabia from 2105-2017. All the MERS-CoV strains belonged to lineage 5, and showed high sequence homology (99.9%) to 2017 strains. Recombination analysis showed a potential recombination event in study strains from patients in Saudi Arabia. The spike gene showed eight amino acid substitutions, especially between the A1 and B5 lineage, and contained positively selected codon 1020. We also determined that the viral loads were significantly ( < 0.001) higher in fatal cases, and virus shedding was prolonged in some fatal cases beyond 21 days. The viral concentration peaked during the first week of illness, and the lower respiratory specimens had higher levels of MERS-CoV RNA. The presence of the diversifying selection and the topologies with the structural mapping of residues under purifying selection suggested that codon 1020 might have a role in the evolution of spike gene during the divergence of different lineages. This study will im-prove our understanding of the evolution of MERS-CoV, and also highlights the need for enhanced surveillance in humans and dromedaries. The presence of amino acid changes at the N-terminal domain and structural mapping of residues under positive selection at heptad repeat 1 provides better insight into the adaptive evolution of the spike gene and might have a potential role in virus-host tropism and pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290774 | PMC |
http://dx.doi.org/10.3390/v12050502 | DOI Listing |
Viruses
December 2024
Laboratory of Microbiology and Biochemistry (LR16SP01), Aziza Othmana Hospital, University Tunis El Manar, Tunis 1068, Tunisia.
Coronavirus disease 2019 (COVID-19) has been associated with a significant fatality rate and persistent evolution in immunocompromised patients. In this prospective study, we aimed to determine the duration of excretion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 37 Tunisian patients with hematological malignancies (40.5% with lymphoma and 37.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.
Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
Djulis ( Koidz.), a member of the family plant, is noted for its vibrant appearance and significant ornamental value. However, the mechanisms underlying color variation in its spikes remain unexplored.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.
Background: Starch is the most abundant carbohydrate in maize grains, serving as a primary energy source for both humans and animals, and playing a crucial role in various industrial applications. Increasing the starch content of maize grains is beneficial for improving the grain yield and quality. To gain insight into the genetic basis of starch content in maize kernels, a multiparent population (MPP) was constructed and evaluated for starch content in three different environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!