Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidative stress plays a relevant role in the progression of chronic conditions, including cardiometabolic diseases. Several Cameroonian plants, including spices, are traditionally used as herbal medicines for the treatment of diseases where oxidative stress contributes to insulin resistance, like type 2 diabetes mellitus. This study evaluated the antioxidant capacity and the effects on oxidative-stress-induced impairment of glucose uptake of 11 Cameroonian spice extracts. HO-induced reactive oxygen species (ROS) production by human HepG2 cells was significantly reduced by 8/11 extracts. The most effective extracts, , , and , showed a concentration-dependent ROS-scavenging activity, which involved Nrf2 translocation into the nucleus. , , , , and extracts showed the highest antioxidant capacity, according to oxygen radical absorbance capacity (ORAC) (2.52-88 μM Trolox Eq/g of extract), ferric-reducing antioxidant power (FRAP) (40.23-233.84 mg gallic acid Eq/g of extract), and total phenol (8.96-32.96% mg gallic acid Eq/g of extract) assays. In HepG2 cells, glucose uptake was stimulated by 4/11 extracts, similarly to insulin and metformin. HO-induced oxidative stress reduced glucose uptake, which was rescued by pretreatment with , , , , and extracts. The ROS-scavenging ability of the spice extracts may reside in some secondary metabolites observed by phytochemical profiling (reverse-phase high-performance liquid chromatography coupled to a diode array detector (HPLC-UV-DAD)). Further studies are needed to better clarify their biological activities and potential use to control oxidative stress and promote insulin sensitivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281205 | PMC |
http://dx.doi.org/10.3390/metabo10050182 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!