Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (K). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.122383 | DOI Listing |
Chempluschem
January 2025
Kaiserslautern University of Technology: Rheinland-Pfalzische Technische Universitat Kaiserslautern-Landau, Chemistry, 67663, Kaiserslautern, GERMANY.
We report the synthesis of a series of detergents with a lactobionamide polar head group and a tail containing four to seven perfluorinated carbon atoms. Critical micellar concentrations (CMCs) were determined using isothermal titration calorimetry (ITC) and surface tension (SFT) measurements, showing a progressive decrease from 27 mM to about 0.2 mM across the series.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey.
In the current research mushroom/bentonite clay (RDBNC) as a low-cost bionanosorbent was investigated for adsorption of methylene blue (MB) and malachite green (MG) dye from contaminated water. The bionanosorbent was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (FESEM), Thermal Gravimetric Analysis (TGA), and Zeta-potential techniques. Adsorption experiments of RDBNC for MB, MG dyes following Freundlich isotherm and pseudo second order kinetic models.
View Article and Find Full Text PDFInt J Thermophys
January 2024
Material Measurement Laboratory, Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA.
The thermal conductivity of liquid -1,2-dichloroethene (R-1130(E)) was measured at temperatures ranging from 240 K to 340 K and pressures up to 25 MPa using a transient hot-wire instrument. A total of 447 thermal conductivity data points were measured along six isotherms. Each isotherm includes data at nine pressures, which were chosen to be at equal density increments starting at a pressure of 0.
View Article and Find Full Text PDFAutophagy
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran.
In this research, activated carbon from banana peel (BPAC) was prepared by calcination (600 °C) method. Nano composites MO@BPAC (MO=NiO, CuO and ZnO) were prepared and then were characterized by XRD, FTIR, FESM, EDX, BETand TGA methods. Formation of MO@BPAC nanocomposites was confirmed by analysis methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!