NR5A1 (nuclear receptor subfamily 5 group A member 1) is a transcriptional regulator of adrenal and gonadal development and function. Heterozygous and homozygous NR5A1 mutations have been described in people with 46,XY disorders of sex development (DSD). The clinical, endocrine, and genetic features of four 46,XY subjects with NR5A1 genetic variants (2 sisters, 2 boys) from 3 unrelated families are reported. All subjects presented with hypergonadotropic hypogonadism and abnormal pubertal progression. Markers of Sertoli cell function were more affected than those of Leydig cell function. Genetic investigation demonstrated the presence of different heterozygous NR5A1 genetic variants. In the boys, pathogenetic NR5A1 gene variants were found that had been previously reported. The 2 sisters carried a new genetic variant in exon 4, and in silico analysis and ACMG classification indicated its pathogenicity. The data confirmed that NR5A1 gene mutations may present with variable genital phenotypes. Anyway, reproductive function was always impaired. Any clinical or endocrine data seem to be unable to differentiate these patients from other 46,XY DSD cases, suggesting that molecular analysis must be warranted. In subjects with NR5A1 mutations, different decisions in sex assignment may permit satisfying somatic and psychological outcome, but any option requires hormonal substitutive therapy from adolescence onward.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000507411 | DOI Listing |
J Pediatr Endocrinol Metab
January 2025
Department of Genetics, Reproductive Biomedicine Research Center, 48499 Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran.
Differences of sex development (DSD) refer to various congenital conditions affecting the urogenital and hormonal systems. Accurate diagnosis and personalized management are crucial for supporting patients through complex decisions, such as those related to gender identity. This study represents the first comprehensive investigation into DSD in Iran, analyzing patient's clinical and genetic data between 1991 and 2020.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
Background: Nuclear receptor subfamily 5 group A member 1 (NR5A1) plays pivotal roles in steroidogenesis and gonadal development. 46, XY disorder of sexual development (DSD) caused by NR5A1 mutations is a rare genetic condition. This study aimed to provide a comprehensive analysis of the clinical characteristics and molecular defects observed in 19 Chinese patients with NR5A1 variants, including assessing the deleterious effects of novel variants in vitro and evaluating their functional impact on the gonad and adrenal glands in vivo.
View Article and Find Full Text PDFEndocr Pathol
December 2024
Derpartment of Pathology, Department of Laboratory Medicine and Pathology, University Health Network, University of Toronto, Toronto, ON, M5G2C4, Canada.
Tumors of adenohypophysial hormone-secreting cells, now classified as pituitary neuroendocrine tumors (PitNETs), have been subclassified based on cell differentiation. Normal adenohypophysial cells have three lineages of differentiation driven by the transcription factors PIT1, TPIT, and SF1 which are responsible for the regulation of hormone gene expression; PIT1 drives expression of GH, PRL, and TSH, TPIT is required for POMC expression that gives rise to ACTH, and SF1 is the transcription factor responsible for FSH and LH expression. The vast majority of PitNETs follow these three lineage differentiation pathways but rare PitNETs show either no lineage differentiation or express biomarkers of more than one lineage.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
November 2024
Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan.
Biol Direct
November 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
Background: Biosynthesis of 17β-estradiol (E2) is a crucial ovarian function in mammals, which is essential for follicular development and pregnancy outcome. Exploring the epigenetic regulation of E2 synthesis is beneficial for maintaining ovary health and the optimal reproductive traits. NORFA is the first validated sow fertility-associated long non-coding RNA (lncRNA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!