We explored the effects of atmospheric CO concentration (C ) and vapor pressure deficit (VPD) on putative mechanisms controlling leaf elongation in perennial ryegrass. Plants were grown in stands at a C of 200, 400 or 800 μmol mol combined with high (1.17 kPa) or low (0.59 kPa) VPD during the 16 h-day in well-watered conditions with reduced nitrogen supply. We measured day : night-variation of leaf elongation rate (LER : LER ), final leaf length and width, epidermal cell number and length, stomatal conductance, transpiration, leaf water potential and water-soluble carbohydrates and osmotic potential in the leaf growth-and-differentiation zone (LGDZ). Daily mean LER or morphometric parameters did not differ between treatments, but LER strongly exceeded LER , particularly at low C and high VPD. Across treatments LER was negatively related to transpiration (R = 0.75) and leaf water potential (R = 0.81), while LER was independent of leaf water potential or turgor. Enhancement of LER over LER was proportional to the turgor-change between day and night (R = 0.93). LGDZ sugar concentration was high throughout diel cycles, providing no evidence of source limitation in any treatment. Our data indicate a mechanism of diel cycling between daytime hydraulic and night-time stored-growth controls of LER, buffering C and daytime VPD effects on leaf elongation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16639 | DOI Listing |
AoB Plants
January 2025
INRAE, URP3F, 86600 Lusignan, France.
Perennial grasses' reproductive phenology profoundly impacts plant morphogenesis, biomass production, and perenniality in natural ecosystems and cultivated grasslands. Complex interactions between vegetative and reproductive development complicate grass phenology prediction for various environments and genotypes. This work aims to analyse genetic × environment interactions effects on tiller growth and reproductive development in Three perennial ryegrass cultivars, Bronsyn, Carvalis, and Tryskal, were grown from seedling to heading under four inductive conditions.
View Article and Find Full Text PDFGenes Genomics
January 2025
Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.
Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.
BMC Genomics
January 2025
Department of Agricultural and Life Industry, Kangwon National University, Chuncheon, 2434, Republic of Korea.
Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.
View Article and Find Full Text PDFBot Stud
January 2025
Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
During surveys in the centres of origin of the coffee leaf rust (CLR), in Africa, as well as in its exotic range in Brazil, 23 isolates of the genus were obtained from uredinial pustules. Using a phylogenetic analysis of all isolates involving a combination of partial sequences of the internal transcribed spacer region of rDNA (ITS) and two gene regions: actin ( and translation elongation factor-1α (), 12 species were delimited; including four new species - , , and . GCPSR criteria were employed for species recognition, supported by morphological and cultural characters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!