A diverse set of unsymmetrically substituted benzils were facilely synthesised by a cross-coupling reaction between 2-hydroxyacetophenones and aryl bromides in the presence of a palladium catalyst. Experimental studies suggested a reaction mechanism involving a one-pot tandem palladium-catalysed α-arylation and oxidation, where aryl bromides play a dual role as mild oxidants as well as arylating agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ob00575d | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp)-C(sp) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(-cyanocarboxamidine) (PyBCam)-ligated nickel catalysts.
View Article and Find Full Text PDFACS Catal
January 2025
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093 Zurich, Switzerland.
Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings.
View Article and Find Full Text PDFACS Catal
January 2025
Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, Shepherds Bush, London W12 0BZ, U.K.
Aryl aldehydes are key synthetic intermediates in the manufacturing of active pharmaceutical ingredients. They are generated on scale (>1000 kg) through the palladium-catalyzed formylation of aryl bromides using syngas (CO/H). The best-in-class catalyst system for this reaction employs di-1-adamantyl--butylphosphine (cataium A), palladium(II) acetate, and tetramethylethylenediamine.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
Carbonylation of aryl electrophiles is an important method for constructing aromatic carbonyl compounds for materials science and pharmaceutical applications. However, there have been few studies on the carbonylation of abundant, inexpensive aryl chlorides. Moreover, the existing carbonylation methods usually require a high temperature, control of the CO pressure, and structurally complex catalysts and ligands.
View Article and Find Full Text PDFOrg Lett
January 2025
Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
A three-component coupling strategy for 1,4-dicarbofunctionalization of 1,3-butadiene with C-H bearing substrates has been developed using photoinduced Pd catalysis, with aryl bromide serving as the hydrogen atom transfer (HAT) reagent. This photocatalytic coupling process achieves functionalized oxindole motifs in good yield and regioselectivity under mild reaction conditions. The versatility and synthetic utility of this method are demonstrated through the addition of a variety of C-H-bearing partners and various oxindole substrates to both substituted and unsubstituted butadiene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!