A Pyridyltriazol Functionalized Zirconium Metal-Organic Framework for Selective and Highly Efficient Adsorption of Palladium.

ACS Appl Mater Interfaces

Departamento de Química and Instituto de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain.

Published: June 2020

This work reports the synthesis of pyridyltriazol-functionalized UiO-66 (UiO stands for University of Oslo), namely, UiO-66-Pyta, from UiO-66-NH through three postsynthetic modification (PSM) steps. The good performance of the material derives from the observation that partial formylation (∼21% of -NHCHO groups) of HBDC-NH by DMF, as persistent impurity, takes place during the synthesis of the UiO-66-NH. Thus, to enhance material performance, first, the as-synthesized UiO-66-NH was deformylated to give pure UiO-66-NH. Subsequently, the pure UiO-66-NH was converted to UiO-66-N with a nearly complete conversion (∼95%). Finally, the azide-alkyne[3+2]-cycloaddition reaction of 2-ethynylpyridine with the UiO-66-N gave the UiO-66-Pyta. The porous MOF was then applied for the solid-phase extraction of palladium ions from an aqueous medium. Affecting parameters on extraction efficiency of Pd(II) ions were also investigated and optimized. Interestingly, UiO-66-Pyta exhibited selective and superior adsorption capacity for Pd(II) with a maximum sorption capacity of 294.1 mg g at acidic pH (4.5). The limit of detection (LOD) was found to be 1.9 μg L. The estimated intra- and interday precisions are 3.6 and 1.7%, respectively. Moreover, the adsorbent was regenerated and reused for five cycles without any significant change in the capacity and repeatability. The adsorption mechanism was described based on various techniques such as FT-IR, PXRD, SEM/EDS, ICP-AES, and XPS analyses as well as density functional theory (DFT) calculations. Notably, as a case study, the obtained UiO-66-Pyta after palladium adsorption, UiO-66-Pyta-Pd, was used as an efficient catalyst for the Suzuki-Miyaura cross-coupling reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c06672DOI Listing

Publication Analysis

Top Keywords

pure uio-66-nh
8
uio-66-nh
5
pyridyltriazol functionalized
4
functionalized zirconium
4
zirconium metal-organic
4
metal-organic framework
4
framework selective
4
selective highly
4
highly efficient
4
adsorption
4

Similar Publications

The use of biocompatible metal-organic frameworks (MOFs) and electrospun nanofibrous implants shows promise in preventing the recurrence of postsurgical glioblastoma. In this study, temozolomide (TMZ) and platinum‑gold nanorods (PtAu NRs) were encapsulated into the UiO-66-NH MOFs. These were then incorporated into the chitosan-grafted polycaprolactone (PCL) (core)/PCL (shell) nanofibers coated with PtAu NRs for extended release of TMZ during chemo-photothermal therapy against glioblastoma cells.

View Article and Find Full Text PDF

Enhancing corrosion resistance and self-healing of water-borne epoxy coatings using TiCTx-supported tannic acid on UIO-66-NH.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China. Electronic address:

In this study, we developed a composite material comprising UIO-66-NH encapsulated tannic acid (TA) loaded on TiCTx to improve the corrosion resistance of water borne epoxy (WEP) coatings. The successful synthesis of the material was determined by FT-IR, XRD, XPS, EDS, TGA, SEM and TEM characterization. Furthermore, ultraviolet (UV)tests were conducted to evaluate the release rate of TA at varying pH levels, revealing a release rate of approximately 95 % at pH 2.

View Article and Find Full Text PDF

Preparation and properties of a metal-organic frameworks polymer material based on Sa-son seed gum capable of simultaneously absorbing liquid water and water vapor.

Int J Biol Macromol

June 2024

Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. Electronic address:

Atmospheric water harvesting (AWH) technology has attracted significant attention as an effective strategy to tackle the global shortage of freshwater resources. Work has focused on the use of hydrogel-based composite adsorbents in water harvesting and water conservation. The approaches adopted to make use of hygroscopic inorganic salts which subject to a "salting out" effect.

View Article and Find Full Text PDF

A dual recognition-based strategy employing Ni-modified metal-organic framework for in situ screening of SIRT1 inhibitors from Chinese herbs.

Talanta

July 2024

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China. Electronic address:

Sirtuin1 (SIRT1), an NAD-dependent histone deacetylase, plays a crucial role in regulating molecular signaling pathways. Recently, inhibition of SIRT1 rather than its activation shows the therapeutic potential for central nervous system disorder, however, the discovered SIRT1 inhibitors remains limited. In this work, a dual recognition-based strategy was developed to screen SIRT1 inhibitors from natural resources in situ.

View Article and Find Full Text PDF

In this study, metal-organic framework (MOF) nanofiber membranes (NFMs) UiO-66-Lys/PAN were prepared by electrospinning using polyacrylonitrile (PAN) as the matrix, UiO-66-NH as the filler, and lysine (Lys) as the functional monomer. The membranes were subsequently employed to extract cobalt ions from simulated radioactive wastewater. The findings showed that the best performance of the membrane was obtained with a 3 % MOF content (3%UiO-66-Lys/PAN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!