Chemical Characteristics, Motivation and Strategies in choice of Materials used as Liver Phantom: A Literature Review.

J Med Ultrasound

Department of Medical Imaging, Faculty of Health Professions, Al-Quds University, Abu Deis - Main Campus, Jerusalem, Palestine.

Published: January 2020

Liver phantoms have been developed as an alternative to human tissue and have been used for different purposes. In this article, the items used for liver phantoms fabrication are mentioned same as in the previous literature reviews. Summary and characteristics of these materials are presented. The main factors that need to be available in the materials used for fabrication in computed tomography, ultrasound, magnetic resonance imaging, and nuclear medicine were analyzed. Finally, the discussion focuses on some purposes and aims of the liver phantom fabrication for use in several areas such as training, diagnoses of different diseases, and treatment planning for therapeutic strategies - for example, in selective internal radiation therapy, stereotactic body radiation therapy, laser-induced thermotherapy, radiofrequency ablation, and microwave coagulation therapy. It was found that different liver substitutes can be developed to fulfill the different requirements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194418PMC
http://dx.doi.org/10.4103/JMU.JMU_4_19DOI Listing

Publication Analysis

Top Keywords

liver phantom
8
liver phantoms
8
radiation therapy
8
liver
5
chemical characteristics
4
characteristics motivation
4
motivation strategies
4
strategies choice
4
choice materials
4
materials liver
4

Similar Publications

Purpose: To investigate the impact of iron particle size on and fat fraction (FF) estimations for coexisting hepatic iron overload and steatosis condition using Monte Carlo simulations and phantoms.

Methods: Three iron particle sizes (0.38, 0.

View Article and Find Full Text PDF

An Emerging Toolkit of Ho Sensitized Lanthanide Nanocrystals with NIR-II Excitation and Emission for Bioimaging.

J Am Chem Soc

January 2025

Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for biomedical detection due to reduced tissue scattering and autofluorescence. However, the rational design of NIR-II probes with superior excitation wavelengths to balance the effects of tissue scattering and water absorption remains a great challenge. To address this issue, here we developed a series of Ho-sensitized lanthanide (Ln) nanocrystals (NaYF: Ho, Ln@NaYF) excited at 1143 nm, featuring tunable emissions ranging from 1000 to 2200 nm for bioimaging.

View Article and Find Full Text PDF

Cine-magnetic resonance imaging (MRI) has been used to track respiratory-induced motion of the liver and tumor and assist in the accurate delineation of tumor volume. Recent developments in compressed sensitivity encoding (SENSE; CS) have accelerated temporal resolution while maintaining contrast resolution. This study aimed to develop and assess hepatobiliary phase (HBP) cine-MRI scans using CS.

View Article and Find Full Text PDF

Increasing Reachability in Robotic Ultrasound Through Base Placement and Tool Design.

Int J Med Robot

February 2025

Insitute for Robotics and Kognitive Systems, University of Luebeck, Luebeck, Germany.

Background: Robotic ultrasound visualises internal organs in real-time for various medical applications without the harm of X-rays. The ultrasound probe is attached to the robot's end effector using custom-developed probe holders. This paper analyzes the impact of different probe holder geometries on the robot's base placement and reachability.

View Article and Find Full Text PDF

In same-day radioembolization, 99mTc-MAA SPECT/CT, 90Y radioembolization, and post-treatment 90Y SPECT/CT procedures are conducted on the same-day, resulting in a dual-isotope environment of 90Y and 99mTc during post-treatment imaging. This study aimed to quantify the impact of 99mTc on 90Y bremsstrahlung-SPECT/CT image quality and to establish an optimised imaging protocol for both clinical practice, and with advanced reconstruction techniques. Utilising a NEMA IQ phantom, contrast recovery coefficients (CRCs) were measured to evaluate the 90Y image quality degradation caused by 99mTc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!